

RECORD OF DECISION

OPERABLE UNIT 4 – SITE 5 AND OFFSHORE AREAS POTENTIALLY IMPACTED BY PNS ONSHORE IR PROGRAM SITES

PORTSMOUTH NAVAL SHIPYARD KITTERY MAINE

CONTRACT NUMBER 62470-08-D-1001 CONTRACT TASK ORDER WE13

TABLE OF CONTENTS

SECT	<u>ION</u>		PAGE NO.				
ACRO	ONYMS		iii				
1.0	DECLARATION						
	1.1	Site Name and Location	1				
	1.2	Statement of Basis and Purpose					
	1.3	Assessment of Site					
	1.4	Description of Selected Remedies	2				
	1.5	Statutory Determinations					
	1.6	ROD Data Certification Checklist					
	1.7	Authorizing Signatures	4				
2.0	DECIS	ION SUMMARY	6				
	2.1	Site Name, Location, and Brief Description					
	2.2	Site History and Enforcement Activities					
	2.3	Community Participation					
	2.4	Scope and Role of Operable Unit					
	2.5	Site Characteristics	12				
	2.5.1	Physical Characteristics	12				
	2.5.2	Conceptual Site Model	13				
	2.5.3	Nature and Extent and Fate and Transport of Contamination	15				
	2.6	Current and Potential Future Site and Resource Uses	16				
	2.7	Summary of Site Risks	16				
	2.7.1	Summary of Human Health Risk					
	2.7.2	Summary of Ecological Risk	18				
	2.7.3	Basis for Action	20				
	2.8	Remedial Action Objectives	20				
	2.9	Description of Alternatives	21				
	2.10	Comparative Analysis of Alternatives	25				
	2.11	Principal Threat Waste	34				
	2.12	Selected Remedies	34				
	2.12.1						
	2.12.2	Description of Selected Remedies	36				
	2.12.3						
	2.13	Statutory Determinations					
	2.14	Documentation of Significant Changes	43				
3.0	RESPO	ONSIVENESS SUMMARY					
	3.1	Stakeholder Comments and Lead Agency Responses	44				
	3.2	Technical and Legal Issues	44				

i

ADMINISTRATIVE RECORD REFERENCE TABLE

TABLES

NUME	<u>BER</u>	
1-1	ROD Data Certification Checklist	
2-1	Previous Investigations and Site Documentation	8
2-2	AOCs and Associated Monitoring Stations	19
2-3	Chemicals Retained as COCs at Each Monitoring Station	
2-4	Cleanup Levels	
2-5	General Response Actions	
2-6	Summary of Remedial Alternatives Evaluated – MS-01	
2-7	Summary of Remedial Alternatives Evaluated – MS-03 and MS-04	
2-8	Summary of Remedial Alternatives Evaluated – MS-12A	
2-9	Summary of Remedial Alternatives Evaluated – MS-12B	
2-10	Comparison of MS-01 Remedial Alternatives	
2-11 2-12	Comparison of MS-03 and MS-04 Remedial Alternatives	
2-12	Comparison of MS-12B Remedial Alternatives	
2-13	How Selected Remedies for the MS-01, MS-03, MS-04, and MS-12 Mitigate Risk and	29
2-14	Achieves the RAO	42
3-1	Summary of Comments from Public Hearing and Public Comment Period	
	FIGURES	
NUME	<u>BER</u>	
1-1	Site Location Map	1
2-1	Site Features	
2-2	Conceptual Site Model	
2-3	MS-01 Selected Remedy	
2-4	MS-03 and MS-04 Selected Remedy	
2-5	MS-12 Selected Remedy – MS-12A	
2-6	MS-12 Selected Remedy – MS-12B	41
	APPENDICES	
Α	State of Maine Concurrence Letter	
В	Proposed Plan for Operable Unit 4	
С	Comments Received During the Public Comment Period and Navy Responses	
D	Human Health and Ecological Risk Tables	
E	Applicable or Relevant and Appropriate Requirements	
F G	Alternative Calculations and Cost Estimates Memorandum for MS-12A	

Acronyms

μg/dL Microgram per deciliter μg/kg Microgram per kilogram

AOC Area of concern

ARAR Applicable or Relevant and Appropriate Requirement
ATSDR Agency for Toxic Substances and Disease Registry

bss Below sediment surface
BMP Best management practice

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CFR Code of Federal Regulations

cm Centimeter

COC Chemical of concern

COPC Chemical of potential concern

CSF Cancer slope factor

cy Cubic yard

DRMO Defense Reutilization and Marketing Office
EERA Estuarine Ecological Risk Assessment

EPC Exposure point concentration

ER-M Effects range median

ER, N Environmental Restoration, Navy

FCS Final Confirmation Study
FFA Federal Facility Agreement

FS Feasibility Study

HHRA Human health risk assessment

HI Hazard index

HMW High molecular weight

HQ Hazard quotient

IAS Initial Assessment Study

IEUBK Integrated Exposure Uptake Biokinetic

IR Installation Restoration
IRG Interim Remedial Goal

LUC Land use control

MEDEP Maine Department of Environmental Protection

mg/kg Milligram per kilogram

NCP National Oil and Hazardous Substances Pollution Contingency Plan

NOAA National Oceanic and Atmospheric Administration

NPW Net present worth

O&M Operation and maintenance

OU Operable Unit

PAH Polycyclic aromatic hydrocarbon

PCB Polychlorinated biphenyl
PNS Portsmouth Naval Shipyard
PPE Personal protective equipment
PRG Preliminary remediation goal
RAB Restoration Advisory Board
RAO Remedial action objective

RCRA Resource Conservation and Recovery Act

RD Remedial design
RfD Reference dose

RFI RCRA Facility Investigation
RI Remedial Investigation

ROD Record of Decision

SARA Superfund Amendments and Reauthorization Act

TSD Treatment, storage, and disposal

UCL Upper confidence limit
USC United States Code

USEPA United States Environmental Protection Agency

1.0 DECLARATION

1.1 SITE NAME AND LOCATION

Portsmouth Naval Shipyard (PNS)

United States Environmental Protection Agency (USEPA) ID No. ME7170022019

Operable Unit (OU) 4 – Site 5 (Former Industrial Waste Outfalls) and Offshore Areas Potentially Impacted by PNS Onshore Installation Restoration (IR) Program Sites. Kittery, Maine

1.2 STATEMENT OF BASIS AND PURPOSE

This Record of Decision (ROD) presents the Selected Remedies for sediment contamination at OU4. These remedies were chosen by the Navy and USEPA in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 United States Code (USC) §9601 et seq., as amended by the Superfund Amendments and Reauthorization Act (SARA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 Code of Federal Regulations (CFR) Part 300 et seq., as amended. This decision is based on information contained in the Administrative Record for the site. The Maine Department of Environmental Protection (MEDEP) concurs with the Selected Remedies (see Appendix A). Upon implementation of the final remedies for OU4, interim offshore monitoring will be discontinued.

OU4 Site 5 and the six areas of concern (AOCs) identified for the PNS offshore are shown on Figure 1-1.

1.3 ASSESSMENT OF SITE

The response actions selected in this ROD are necessary to protect the environment from actual or threatened releases of pollutants or contaminants from the offshore areas associated with OU4 that may present an imminent and substantial endangerment to the offshore environment. A CERCLA action is required because concentrations of copper, lead, and select polycyclic aromatic hydrocarbons (PAHs) [acenaphthylene, anthracene, fluorene, and high molecular weight (HMW) PAHs] in sediment pose potential unacceptable current and future risk to benthic invertebrates. OU4 includes Site 5 – the Former Industrial Waste Outfalls, and six AOCs that were potentially impacted by past releases from onshore IR Program sites. IR Program contaminant sources have been eliminated or are being controlled through various onshore actions.

The six AOCs are Clark Cove, Sullivan Point, Defense Reutilization and Marketing Office (DRMO) Storage Yard, Dry Docks, Back Channel, and Jamaica Cove. Past contamination from Site 5 is addressed as part of the Dry Dock AOC, and due to the offshore nature of the contamination at the six AOCs, these areas have been evaluated using 14 separate monitoring stations. These monitoring stations (labeled MS-01 to MS-14) provide coverage of the offshore AOCs, and remedial alternatives for OU4 were developed and evaluated for individual monitoring stations or groups of nearby monitoring stations. The locations of the monitoring stations in relation to the AOCs are shown on Figure 1 -1.

Chemicals concentrations in sediment are greater than acceptable levels for ecological exposure at MS-01 (PAHs), MS-03 (copper), MS-04 (copper and PAHs), and MS-12 (lead and PAHs). Therefore, further action is required for these monitoring stations. Based on the distribution of chemical concentrations and differences in physical settings, MS-12 was divided into MS-12A (lead and PAHs) and MS-12B (lead). Response actions are provided in this ROD for these five areas.

There are no unacceptable risks at MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14; therefore, further action is not required at these 10 monitoring stations.

1.4 DESCRIPTION OF SELECTED REMEDIES

The major components of the Selected Remedy for MS-01, MS-03, MS-04, and MS-12 (A and B) include the following:

- Dredging of contaminated sediment at each monitoring station.
- Dewatering of sediment dredged from each monitoring station.
- Disposal of dredged sediment in an off-yard landfill.

The Selected Remedies for MS-01, MS-03, MS-04, and MS-12 (A and B) remove contaminated sediment to reduce chemical concentrations to acceptable levels. Land use controls (LUCs), operation and maintenance (O&M), monitoring, inspection, and five-year reviews will not be required after removal of contaminated sediment in these five areas. The Selected Remedies for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14 are No Further Action. Upon implementation of the final remedies for OU4, interim offshore monitoring will be discontinued.

The Selected Remedies for OU4 are expected to achieve substantial long-term risk reduction and allow for unlimited use and unrestricted exposure for the offshore areas. This ROD documents the final remedial decisions for OU4 and does not include or affect any other sites at the facility. Implementation of this decision is consistent with current uses and the overall cleanup strategy for PNS to clean up sites to support Shipyard operations.

The remedies for the monitoring stations address Site 5 and the AOCs as follows.

AOC/Site	Monitoring Station	Remedy
Dry Dock/Site 5	MS-12 (A and B)	Sediment Removal
	MS-13, MS-14	No Further Action
Back Channel	MS-01	Sediment Removal
	MS-02	No Further Action
	MS-03, MS-04	Sediment Removal
Jamaica Cove	MS-05, MS-06	No Further Action
Clark Cove	MS-07, MS-08,	No Further Action
	MS-09	
Sullivan Point	MS-10	No Further Action
DRMO Storage Yard	MS-11	No Further Action

1.5 STATUTORY DETERMINATIONS

The Selected Remedies are protective of human health and the environment, comply with federal and state requirements that are applicable or relevant and appropriate to the remedial actions, are cost-effective, and utilize permanent solutions and alternative treatment (or resource recovery) technologies to the maximum extent practicable. The Selected Remedies do not satisfy the statutory preference for remedies that use treatment as a principal element to reduce the toxicity, mobility, or volume of hazardous substances, pollutants, and contaminants. Based on the types, depths, and patterns of contamination across OU4, the Navy concluded that it was impracticable to treat the chemicals of concern (COCs) in a cost-effective manner.

Five-year site reviews will not be required for OU4 because contamination will not remain in excess of levels that allow for unlimited use and unrestricted exposure.

1.6 ROD DATA CERTIFICATION CHECKLIST

The locations in Section 2.0, Decision Summary, of the information required to be included in the ROD are summarized in Table 1-1. Additional information can be found in the Administrative Record file for PNS.

TABLE 1-1. ROD DATA CERTIFICATION CHECKLIST					
DATA	LOCATION IN ROD				
COCs and their respective concentrations	Sections 2.5 and 2.7				
Baseline risk represented by the COCs	Section 2.7				
Cleanup levels established for COCs and the basis for these levels	Section 2.8				
How source materials constituting principal threats are addressed	Section 2.11				
Current and reasonably anticipated future land use assumptions and current and potential future beneficial uses of groundwater used in the risk assessment	Section 2.6				
Potential land and groundwater uses that will be available at the site as a result of the Selected Remedies	Section 2.12.3				
Estimated capital, operating and maintenance, and total net present worth (NPW) costs; discount rate; and number of years over which the remedy costs are projected	Appendix F				
Key factors that led to the selection of the remedies	Section 2.12.1				

If previously unknown contamination posing an unacceptable risk to human health or the environment is discovered after execution of this ROD and is shown to be a result of Navy activities, the Navy will undertake the necessary actions to ensure continued protection of human health and the environment.

1.7 AUTHORIZING SIGNATURES

The signatures provided below and on the following page validate the selection by the Navy and USEPA of the final remedies for contamination at OU4. MEDEP concurs with the Selected Remedies.

W. C. Greene

Captain, United States Navy Commanding Officer

Portsmouth Naval Shipyard

Date

8/7/13

James T. Owens, III, Director
Office of Site Remediation and Restoration

USEPA Region 1

Date

2.0 DECISION SUMMARY

2.1 SITE NAME, LOCATION, AND BRIEF DESCRIPTION

PNS, USEPA ID number ME7170022019, is a military facility with restricted access on an island located in the Piscataqua River, referred to on National Oceanic and Atmospheric Administration (NOAA) nautical charts as Seavey Island, with the eastern tip given the name Jamaica Island. Clark's Island is to the east attached by a rock causeway to Seavey Island. The Piscataqua River is a tidal estuary that forms the southern boundary between Maine and New Hampshire. PNS is located in Kittery, Maine, north of Portsmouth, New Hampshire, at the mouth of the Great Bay Estuary (commonly referred to as Portsmouth Harbor). The shipbuilding history of PNS dates back to the 1800s, and the facility has been engaged in the construction, conversion, overhaul, and repair of submarines for the Navy since 1917.

OU4 is divided into six AOCs, identified in the Estuarine Ecological Risk Assessment (EERA) Report as nearshore habitats adjacent to PNS that may have been affected by onshore IR Program sites. A conceptual model developed as part of the EERA was used to identify AOCs, which include Clark Cove, Sullivan Point, DRMO Storage Yard, Dry Docks, Back Channel, and Jamaica Cove. In 1999, an interim remedy was selected to provide sediment monitoring before a final remedy was selected for OU4. As part of the Interim Offshore Monitoring Program, 14 monitoring stations were identified to provide coverage of the offshore AOCs for interim monitoring purposes. The AOC, monitoring station, and IR Program site locations are shown on Figure 2-1.

Two IR Program sites, Site 5 - Former Industrial Waste Outfalls and Site 26 - Portable Oil/Water Tanks, were considered sites that had offshore impacts but no onshore impacts. In August 2001, a Decision Document was signed indicating that No Further Action under CERCLA is necessary for Site 26; therefore, Site 26 is no longer included in OU4. Site 5 is located within the Dry Docks AOC, and any offshore impacts that the site may have had are being addressed as part of the Dry Dock AOC. Site 5 consisted of numerous discharge points along the Piscataqua River at the western end of PNS in the dry dock area. The outfalls were used from approximately 1945 to 1975 to discharge liquid industrial wastes (primarily from acidic, alkaline, and metal-plating rinse baths) to the offshore before the sanitary and storm sewer systems were separated and offshore discharge of industrial wastes was discontinued. The wastewaters may have contained heavy metals (mercury, lead, cadmium, chromium, copper, and zinc), oils and grease, and polychlorinated biphenyls (PCBs). Lead sediment from decommissioned batteries was also reportedly included in the discharge to the river before 1975 (in the MS-12 area). In 1978, dredging was conducted offshore in the vicinity of the outfalls (in the berth areas by the dry docks), and maintenance dredging is conducted periodically in the berth areas. Site 5 and the IR Program sites that potentially affected the offshore and the associated monitoring stations and AOCs are discussed herein.

MS-01, MS-02, MS-03, and MS-04 are located in the Back Channel AOC. MS-01 is located in the western portion of the AOC, offshore of Site 34 (OU9) and adjacent to the bridge leading to Gate No. 1. Past disposal of ash at Site 34 is the likely source of elevated PAHs at MS-01. Removal of the ash as part of a 2007 removal action at Site 34 eliminated the site-related source of contamination to this station. MS-02 is located between Topeka Pier and the bridge from Gate No. 2. There are no known IR Program sites immediately onshore of MS-02. MS-03 and MS-04 are located in the eastern portion of the AOC, offshore of Site 32 (OU7). Foundry slag associated with fill material at Site 32 has been identified in the intertidal areas of MS-03 and MS-04 and is likely the source of elevated metals and PAH concentrations at those stations. Removal of surficial debris in the intertidal area and placement of shoreline erosion controls as part of a 2006 removal action at Site 32 eliminated the site-related source of contamination to these monitoring stations.

MS-05 and MS-06 are located in the offshore area of OU3 in Jamaica Cove and are adjacent to the wetland constructed as part of the remedy for OU3. As part of the remedy for OU3, contaminated soil adjacent to Jamaica Cove was excavated, and wetlands were constructed in the excavated area. Although there is no longer contaminated soil adjacent to Jamaica Cove, the excavation of contaminated soil resulted in a temporary increase in chemical concentrations in sediment offshore of Jamaica Cove.

MS-07, MS-08, and MS-09 are located in the Clark Cove AOC. MS-07 is located in a recreational area of the AOC, and is not immediately offshore of OU3. There are no known IR Program sites immediately onshore of MS-07. MS-08 and MS-09 are located immediately offshore of OU3 in the AOC. The intertidal area near MS-08 was excavated as part of OU3 remedial activities in 2004, and the excavated area was backfilled with clean material. As part of OU3 remedial activities, shoreline erosion controls were installed in the small intertidal areas that existed at MS-09 and then the area was covered with riprap; therefore, there is no longer an intertidal area associated with MS-09.

MS-10 is located at the southeastern corner of PNS, within the Sullivan Point AOC. It is the only monitoring station in this area, and no previous activity is suspected to have led to contamination. There are no known IR Program sites immediately onshore of MS-10.

MS-11 is located within the DRMO Storage Yard AOC. MS-11 is located in the main channel of the Piscataqua River, just offshore of OU2 (Sites 6 and 29). Past DRMO and waste disposal activities led to soil contamination at OU2. Physical movement of contaminated soil, such as snow plowing and erosion of contaminated soil, have resulted in contamination of the offshore area adjacent to OU2 in the past. Current erosion of contaminated soil is not occurring because of controls placed along the shoreline (in 1999 along Site 6 and in 2005, 2006, and 2008 along Site 29).

MS-12, MS-13, and MS-14 are located in the western section of PNS in the Dry Docks AOC. MS-12 is located adjacent to Building 178 and offshore of Sites 5 and 10. One likely source of contamination in the area is the former industrial waste outfalls (Site 5) that reportedly discharged material during previous operations. Other potential Navy and non-Navy sources of contamination exist at MS-12, including potential migration or transport from various boat, barge, and dock-side activities. There are no current IR Program sources of contamination to MS-12. MS-13 is located outside of a dry dock offshore of Sites 5 and 31. MS-14 is located in the westernmost part of the back channel to monitor sediment potentially impacted by Sites 5 and 31.

PNS is an active facility, and environmental investigations and remediation at the facility are funded under the Environmental Restoration, Navy (ER, N) Program. The Navy is the lead agency for CERCLA activities at the facility, and USEPA and MEDEP are support agencies.

2.2 SITE HISTORY AND ENFORCEMENT ACTIVITIES

Table 2-1 provides brief summaries of previous investigations at OU4. Results of these investigations indicated that copper, lead, nickel, and certain PAHs are present in sediment at several monitoring stations within OU4 at concentrations that exceed cleanup levels.

TABLE 2-1. PREVIOUS INVESTIGATIONS AND SITE DOCUMENTATION					
Investigation Date		ACTIVITIES			
Initial Assessment Study (IAS) and Final Confirmation Study (FCS)	1983 to 1986	Assessed and identified potential threats posed by sites to human health and the environment. Industrial waste outfalls were first identified as a site in the IAS. The outfalls were used to discharge industrial wastes into the Piscataqua River from approximately 1945 until 1975. Sediment sampling in the offshore began during the FCS.			
Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI)	1989 to 1995	Consisted of several stages from October 1989 to February 1992, with results compiled into the RFI Report. USEPA issued the RFI "Approval with Conditions" in March 1993, and the Addendum to the RFI Report was submitted to address the "Approval with Conditions." The RFI Data Gap Report, finalized in 1995, is supplemental to the RFI Report and presents the results of the data gap investigation.			
Phase I and Phase II Sampling	1991 to 1993	Offshore sampling was conducted to provide data to support human health and ecological risk assessments for the PNS offshore area. As part of the sampling, six AOCs were identified as nearshore habitats adjacent to PNS that may have been affected by onshore IR Program sites. Samples included sediment, surface water, and tissue.			

TABLE 2-1. PREVIOUS INVESTIGATIONS AND SITE DOCUMENTATION					
INVESTIGATION	DATE	ACTIVITIES			
Human Health Risk Assessment (HHRA) and Phase I/Phase II Offshore Data Comparison	1994 to 1998	The 1994 HHRA was based on Phase I data, and the results were updated in 1998 based on Phase II data. Potential exposure points and routes identified for human health included dermal contact with and ingestion of surface water and sediment, and ingestion of biota (lobster, mussels, and flounder) for the PNS offshore area. The results showed that human health risks for exposure to sediment and surface water were acceptable. Concentrations of chemicals in seafood causing potentially unacceptable risks around PNS were generally similar to or less than concentrations in background samples or other coastal waters of Maine.			
Interim ROD	1999	Required the Navy to conduct monitoring for the offshore area of PNS in the interim period before the Feasibility Study (FS) was completed for the offshore area and until the final remedy for OU4 is implemented. The Navy determined that interim monitoring was warranted for OU4 to provide current data on the offshore areas to determine whether onshore remedial actions, natural processes, and/or other sources have affected chemical concentrations in OU4.			
EERA	2000	An ecological risk assessment for the PNS offshore area was conducted using 1991 to 1993 data. Sediment, surface water, and tissue samples were collected from the offshore area for various analyses/studies. Although the document was finalized after the Interim ROD, the risk results supported selection of the interim remedy. The results of the analyses/studies were used to evaluate ecological risks for the offshore area. The risk determinations associated with surface water and sediment exposure for each AOC and chemicals of potential concern (COPCs) for each AOC were identified. The ecological risks associated with exposure to surface water were determined to be acceptable, and ecological risks associated with exposure to sediment were determined to be potentially unacceptable. Sediment COPCs included metals, PAHs, and PCBs.			
Decision Document for Site 26	2001	Documents that No Further Action under CERCLA is required for Site 26 and that Site 26 is no longer included in OU4.			
Interim Offshore Monitoring for OU4	1999 to 2011	A monitoring plan was developed and 11 rounds of sampling plus two additional scrutiny investigations were conducted from September 1999 through April 2011. The monitoring plan identified 14 interim offshore monitoring stations located around PNS in the AOC areas and four reference stations (background locations representing non-PNS-impacted areas) in the Great Bay Estuary. As part of the monitoring program, chemical concentrations detected in sediment samples from monitoring stations were compared to concentrations in reference samples to determine whether the contamination was site related or similar to reference concentrations. Preliminary remediation goals (PRGs) were developed using Round 2 data and were used to support identification of Interim Remediation Goals (IRGs) for the monitoring program COCs. IRGs were developed for selected metals and PAHs and were used in the evaluation of data as part of the Interim Offshore Monitoring Program. The data from Rounds 1 through 4 were evaluated in the Baseline Report in 2002, and data from Rounds 1 through 7 were evaluated in the Rounds 1 through 7 Report in 2004. Modifications were made to the monitoring program based on the evaluations in these reports. In addition, investigation related to the nature and extent of contamination at select monitoring stations was recommended and conducted as part of additional scrutiny investigations or Remedial Investigations (RIs) for onshore areas. Two phase of additional scrutiny were conducted and sediment samples were collected as part of the Phase I OU7 RI in 2003 and OU9 RI in 2009. The data from the Phase I Additional Scrutiny Investigation were evaluated in the Rounds 1 through 10 Interim Monitoring Program Report in 2010. Data from Round 11 were evaluated in the Second Five-Year Review Report.			

TABLE 2-1. PREVIOUS INVESTIGATIONS AND SITE DOCUMENTATION					
Investigation Date		ACTIVITIES			
Interim Offshore Monitoring for OU4 (Continued)	1999 to 2011	The interim offshore monitoring data, including data collected as part of the onshore RIs, were used to determine which monitoring stations had acceptable COC levels to support recommendation for No Further Action. Based on interim offshore monitoring data, COC levels were acceptable at MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-13, and MS-14. Although COC levels were elevated in samples from MS-11, there is a minimal amount of fine-grained sediment present at this station, and the results showed there is not sufficient sediment to cause ecological risk at MS-11. COC levels at MS-01, MS-03, MS-04, and MS-12 required further evaluation.			
Public Health Assessment for PNS	2007	The Agency for Toxic Substances and Disease Registry (ATSDR) conducted a Public Health Assessment for PNS and concluded that adults and children consuming fish or shellfish or wading in surface water or sediment offshore of PNS are not likely to experience adverse health effects from the levels of chemicals in those media.			
FS	2012	Conducted to develop and evaluate potential cleanup alternatives for OU4.			
Proposed Plan	2012	Presented the Navy's Preferred Alternatives to address contamination at OU4, including removal and off-yard disposal of contaminated sediment from MS-01, MS-03, MS-04, MS-12 (A and B), and No Further Action for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14.			
PNS Building 178 renovation project	2013	Contaminated sediment within the working area for a PNS renovation project for Building 178 was removed from January to March 2013 resulting in elimination of unacceptable risks in a portion of MS-12A, as discussed further in Appendix G of this ROD.			

On May 31, 1994, PNS was placed on the National Priorities List by USEPA pursuant to CERCLA of 1980 and SARA of 1986. The National Priorities List is a list of uncontrolled or abandoned hazardous waste sites identified by USEPA as requiring priority remedial actions. The Navy and USEPA signed the Federal Facility Agreement (FFA) for PNS in 1999 to ensure that environmental impacts associated with past and present activities at PNS are thoroughly investigated and that the appropriate remedial action is pursued to protect human health and the environment. In addition, the FFA establishes a procedural framework and timetable for developing, implementing, and monitoring appropriate responses at PNS, in accordance with CERCLA (and SARA of 1986, Public Law 99-499), 42 USC §9620(e)(1); the NCP, 40 CFR 300; RCRA, 42 USC §6901 et seq., as amended by the Hazardous and Solid Waste Amendment of 1984; Executive Order 12580; and applicable state laws. There have been no cited violations under federal or state environmental law or any past or pending enforcement actions pertaining to the cleanup of OU4.

2.3 COMMUNITY PARTICIPATION

The Navy has been conducting community relations activities for the IR Program at PNS since the program began. From 1988 to November 1994, Technical Review Committee meetings were held on a regular basis. In 1994, a Restoration Advisory Board (RAB) was established to increase public participation in the IR Program process. Many community relations activities for PNS involve the RAB, which historically met quarterly and recently has met two to four times per year. The RAB provides a forum for discussion and exchange of information on environmental restoration activities among the Navy, regulatory agencies, and the community, and it provides an opportunity for individual community members to review the progress and participate in the decision-making process for various IR Program sites including OU4. Details of the history, objectives, and implementation techniques of community relations activities at PNS can be found in the 2012 Final Community Involvement Plan Update.

The following community relations activities are conducted at PNS as part of the Community Relations Program:

Information Repositories: The Public Library in Portsmouth, New Hampshire, and the Rice Public Library in Kittery, Maine, are the designated Information Repositories for the PNS IR Program. Documents are available on the public website at http://go.usa.gov/vvb.

Key Contact Persons: The Navy has designated information contacts related to PNS. Materials distributed to the public, including any fact sheets and press releases, will indicate these contacts.

Regular Contact with Local Officials: The Navy arranges regular meetings to discuss the status of the IR Program with the RAB.

Press Releases and Public Notices: The Navy issues press releases and public notices as needed to local media sources to announce public meetings and comment periods and the availability of reports and to provide general information updates.

Public Meetings: The Navy conducts informal public meetings to keep residents and town officials informed about cleanup activities at PNS and significant milestones in the IR Program. Meetings are conducted to explain the findings of RIs, to explain the findings of FSs, and to present Proposed Plans, which explain the preferred alternatives for cleaning up individual sites.

Fact Sheets and Information Updates: The Navy develops fact sheets to mail to public officials and other interested individuals and/or to use as handouts at public meetings. Fact sheets are used to explain certain actions or studies, to update readers on revised or new health risks, or to provide general information on the IR Program process.

Responsiveness Summary: The Responsiveness Summary summarizes public concerns and issues raised during the public comment period on the Proposed Plan and documents the Navy's formal responses. The Responsiveness Summary may also summarize community issues raised during the course of the FS.

Announcement of the ROD: The notice of the final ROD will be published by the Navy in a major local newspaper prior to commencement of the selected remedial actions.

Public Comment Periods: Public comment periods allow the public an opportunity to submit oral and written comments on the proposed cleanup options. Citizens have at least 30 days to comment on the Navy's preferred alternatives for cleanup actions as indicated in the Proposed Plan.

Technical Assistance Grant: A Technical Assistance Grant from USEPA can provide up to \$50,000 to a community group to hire technical advisors to assist them in interpreting and commenting on site reports and proposed cleanup actions. A Technical Assistance Grant has been awarded to a community organization.

Site Tours: The PNS Public Affairs Office periodically conducts site tours for media representatives, local officials, and others.

A notice of availability of the Proposed Plan for OU4 was published on February 27, 2013, in the Portsmouth Herald and Fosters Daily Democrat. The notice also announced the start of the 30-day public comment period that ended on March 28, 2013. The Proposed Plan and other documents related to these sites are available to the public through the PNS Environmental Restoration Program public website (http://go.usa.gov/vvb). Additionally, an index of available documents is available at the PNS Information Repositories located at the Portsmouth Public Library in Portsmouth, New Hampshire, and Rice Public Library located in Kittery, Maine. A copy of the notices and the Proposed Plan are included in Appendix B of this ROD.

The Proposed Plan notice of availability invited the public to attend a public meeting at the Kittery Town Hall in Kittery, Maine, on March 13, 2013. The public meeting presented the proposed remedies and solicited oral and written comments. At the public meeting, personnel from the Navy, USEPA, and

MEDEP were available to answer questions from the attendees during the informal portion of the meeting. In addition, public comments on the Proposed Plan were formally received and transcribed. The transcript from the public meeting is provided in Appendix C. Responses to the comments received during the public comment period are discussed in the Section 3.0 of this ROD.

2.4 SCOPE AND ROLE OF OPERABLE UNIT

OU4 is part of a comprehensive environmental investigation and cleanup program currently being performed at PNS. In accordance with Section 120(e) of CERCLA, an FFA was entered into between the Navy and USEPA in 1999. Eleven sites are included in the IR Program at PNS. Ten of the sites (excluding Site 30) are included within one of the seven OUs at PNS. Final decisions regarding remedial actions have been made for Sites 8, 9, and 11 in the OU3 ROD (2001), Site 10 in the OU1 ROD (2010), and Sites 6 and 29 in the OU2 ROD (2011). Site 5 is within OU4, the subject of this ROD, along with six AOCs. Proposed Plans were prepared for Sites 32 (OU7 and 34 (OU9) and public comment periods and ROD signatures are anticipated in 2013. One site, Site 31 (OU8), is in the RI/FS stage. A non-time-critical removal action was conducted at Site 30, and a No Further Action Decision Document is being prepared. The Site Management Plan for PNS further details the schedule for the IR Program activities and is updated annually.

OU4 addresses past releases of contamination to the offshore area from Site 5 and onshore IR Program sites. Investigations at OU4 indicate the presence of sediment contamination at MS-01, MS-03, MS-04, and MS-12 (A and B) that poses potential unacceptable risks to the environment. To support the Shipyard renovation project for Building 178, contaminated sediment was removed from the portion of MS-12A within the working area of the renovation project, as discussed further in Appendix G. With the elimination of unacceptable risks, no CERCLA action is required for this portion of MS-12A. Therefore, the area of MS-12A contaminated sediment that will be addressed by the ROD for OU4 does not include the portion within the working area (see Appendix G). There are no unacceptable risks at MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14.

The monitoring stations provide coverage of Site 5 and the offshore AOCs; therefore, the remedies documented in this ROD will achieve the remedial action objective (RAO) for Site 5 and the offshore AOCs as listed in Section 2.8. Implementation of these remedies will allow continued use of the site to support Shipyard operations, which is consistent with the current and reasonably anticipated future industrial use of these sites and the overall cleanup strategy for PNS of restoring sites to support Shipyard operations.

2.5 SITE CHARACTERISTICS

2.5.1 Physical Characteristics

OU4 is the offshore area of the Piscataqua River and Back Channel around PNS potentially impacted by onshore IR Program sites and Site 5 (former industrial waste outfalls), and it is delineated by 14 monitoring stations. Area industries that may also affect the offshore area of PNS include retail and wholesale trades, textiles, manufacturing, fishing, shipbuilding, power plants, and gas storage facilities.

All of the monitoring stations are located at sea level, with any changes in elevations being caused by the tide. Semi-diurnal tidal currents, the horizontal motions associated with tidal changes in water levels, predominate in Portsmouth Harbor. Near Seavey Island, the mean tidal range is 8.1 feet. The overall ebb and flood currents in the vicinity of PNS are high. The average flood currents range from 3.0 knots south of Seavey Island to 3.3 knots southwest of Badgers Island (located approximately 1,000 feet east of PNS). The average ebb currents are 3.8 knots south of Seavey Island and 3.7 knots southwest of Badgers Island. Because of the strong currents, most ships wait for favorable tides before moving up and down the narrow Piscataqua River. The estimated flushing rates of Portsmouth Harbor and the lower reaches of the Great Bay Estuary range from 3.3 to 6.3 tidal cycles.

The offshore areas at PNS include pelagic, channel bottom/subtidal, eelgrass, intertidal mudflat, rocky intertidal, and salt marsh habitats. The pelagic habitat around PNS is the open water of the Piscataqua River, which includes the Back Channel, Jamaica Cove, and Clark Cove. The channel bottom/subtidal habitat is the bottom of the pelagic area and includes hard-bottom areas and fine-grained depositional areas. Eelgrass habitats occur in subtidal areas by Jamaica Cove, Clark Cove, Sullivan Point, the Dry Docks, and in the Back Channel. Intertidal mudflats are generally muddy-sand or sandy-mud areas fringing the shoreline along the Back Channel, off Jamaica Island (in Jamaica Cove), and around Clark's Island. The rocky intertidal habitat occurs in many locations along Seavey and Jamaica Islands where the shoreline is exposed to river currents and where there are no appreciable fine-grained sediment accumulations (such as at MS-11). Salt marsh habitats have been identified in Clark Cove, by Clark's Island, and in the Back Channel (including Jamaica Cove).

No known endangered, threatened, or protected species or critical habitats are located within the boundaries of PNS. However, the entire State of Maine is considered a habitat of the federally listed endangered short-nosed sturgeon, and the Gulf of Maine population of Atlantic sturgeon is listed as a threatened species. PNS also does not include areas designated as Essential Habitat by the State of Maine. Essential habitats are habitats necessary to the conservation of endangered or threatened species, as determined by Maine Endangered Species Act and Regulations based on observation of the species and confirmed habitat use. Clark's Island, located on the eastern side of PNS offshore of MS-09, requires special consideration because of its use by colonial nesting seabirds (nesting season is from April 1 to August 15).

2.5.2 Conceptual Site Model

Figure 2-2 presents the OU4 conceptual site model, which identifies contaminant sources, transport routes, and potential receptors. The primary sources of contamination to OU4 were from past releases from Site 5 and PNS onshore IR Program sites. There are also non-IR and non-PNS sources of contamination to the offshore area.

Contaminants from onshore PNS IR Program sites were released to soil and groundwater at onshore sites primary through spills, placement on soil, and burying in soil. These contaminants were then released to the offshore area through erosion, runoff, and groundwater discharge. Also, contaminants from some sites were directly discharged to the offshore area. Several possible secondary sources of contamination exist, including physical movement of contaminated soil at IR Program sites prior to paving or placement of other cover material over the contaminated soil, offshore sediment dredging activities that took place at PNS without the use of turbidity curtains, contaminated groundwater migration to sediment, tidal erosion and storm water runoff from IR Program sites and non-IR Program sites, and non-PNS-related activities such as boating and fishing activities. As discussed in Section 2.1, there is little potential for current significant releases of contaminants from the IR Program sites to the offshore area. Future potential releases from onshore IR Program sites are being addressed as part of the onshore IR Program sites.

Along the Piscataqua River there is a large amount of industry and urbanization. The contaminants detected in sediments at PNS, primarily metals and PAHs, can be found to varying degrees in non-PNS discharges and operations along the Piscataqua River from sources such as local industries, urban non-point-source runoff, municipal water treatment discharges, and fuel or oil terminals. PAHs from the use of petroleum products in fuels and road surfaces can reach sediment through surface runoff from PNS and non-PNS areas. PCBs may be attributed to past activities in the watershed, and although numerous potential sources of contamination were identified, their relative contributions to sediment contamination adjacent to PNS could not be definitively established.

The primary ecological risk to benthic invertebrates from OU4 is from exposure to bioavailable/bioaccessible COCs in sediment. Exposure routes of contaminants in sediment to benthic invertebrates include direct contact, direct ingestion, and ingestion of prey. The biologically active zone in sediment varies depending on season, grain size, and currents. Sediment from 0 to 10 centimeters (cm) includes the biologically active zone (benthic organisms are living and mixing sediment within this depth)

and was the general depth of surficial sediment samples collected during previous sediment investigations around PNS. Although various ecological and human receptors may be present and come into contact with surface water and sediment in the offshore area, it was determined through previous investigations that the primary receptors of concern for the offshore area were benthic invertebrates exposed to sediment. Human exposure to surface water and sediment and ecological exposure to surface water were determined not to be concerns for OU4. In addition, ingestion of fish or shellfish was also determined not be a concern for OU4.

2.5.3 Nature and Extent and Fate and Transport of Contamination

The COCs detected in sediment samples at OU4 based on the Interim Offshore Monitoring Program results are select metals and PAHs. The monitoring program showed that concentrations of COCs at MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-13, and MS-14 were less than ecological risk levels.

At MS-11, copper, lead, and nickel are the COCs that resulted from past erosion of soil from the OU2 shoreline. With the installation of shoreline erosion controls, erosion is no longer occurring along the OU2 shoreline. The offshore area of OU2 is rocky, and there is a minimal amount of fine-grained sediment at MS-11; therefore, there is not sufficient sediment to cause ecological risk. In the one location where a small amount of sediment was found, concentrations of copper, lead, and nickel exceeded ecological risk levels in two to six of the seven sampling rounds conducted prior to installation of the shoreline erosion controls. Concentrations of COCs were less than ecological risk levels in samples collected during the one round of sampling at MS-11 conducted after placement of the shoreline erosion controls (Round 11).

MS-01 is located in the western portion of the Back Channel AOC, offshore of Site 34 (OU9) and adjacent to the bridge leading to Gate No. 1. PAH concentrations in sediment at MS-01 exceeded acceptable ecological levels and likely resulted from past erosion of ash from past operations at OU9. Sediment contamination was found in the intertidal and subtidal portions of the monitoring station. The monitoring station is located in an area where the width of the channel decreases and the water velocity is very fast during incoming and outgoing tides. As a result, there is more sand and less silt in sediment at this station. Sediment contamination was generally 0 to 2 feet below sediment surface (bss).

MS-03 and MS-04 are located in the eastern portion of the Back Channel AOC, offshore of Site 32 (OU7). Copper and nickel concentrations in sediment at MS-03 and copper, nickel, and PAH concentrations in sediment at MS-04 exceeded acceptable ecological levels and are associated with past erosion of fill material located in the onshore area adjacent to these monitoring stations. Debris, including foundry slag, was found eroding from fill material along the shoreline, and the surface debris was subsequently removed and shoreline controls placed in the mid- to high-tide area of the OU7 shoreline. The removal action addressed the majority of contaminated sediment, including the nickel contamination. Residual contamination (copper at MS-03 and copper and PAHs at MS-04) was found in some areas within the mid- to low-tide portion of the monitoring stations. Sediment contamination was generally 0 to 2 feet bss.

MS-12 is located in a depositional area that includes the area offshore of Site 5, Site 10 (OU1), and Building 178 within the Dry Docks AOC. The floor of Building 178, in the southern portion of the building (closest to the water), slopes down to the Piscataqua River outside the building. At high tide, river water enters approximately 100 feet into the building on this ramp. As a result, sediment was present on the floor of the building on the portion of the ramp that is inundated with water at high tide. Sediment within the building and a portion of the ramp outside the building was removed in 2013 (see Appendix G). The ramp ends outside the building approximately 140 feet offshore of the building wall. There is an eelgrass bed in the subtidal portion of the ramp. Concentrations of lead and PAHs in remaining sediment on the ramp are greater than acceptable ecological levels, except within the eelgrass bed. Concentrations in sediment in the eelgrass bed are acceptable. Samples collected east of the ramp from subtidal sediment along the berth by Site 10 had lead concentrations greater than acceptable levels. Sediment contamination was generally 0 to 1 feet bss, although some areas on the ramp had contamination approximately 2 to 3 feet bss.

2.6 CURRENT AND POTENTIAL FUTURE SITE AND RESOURCE USES

The current land use patterns at PNS are well established and are not expected to change in the foreseeable future. Industrial areas that support maintenance of submarines are in the western portion of the facility, and include all of the dry docks and submarine berths and numerous buildings that house trade shops related to the maintenance activities. Uses of other portions of PNS include administration offices, officers' residences, equipment storage, parking, and recreational facilities.

The offshore area of PNS currently and historically has been used for boat docks and piers and for vessel transport as part of Shipyard operations. The Piscataqua River and Back Channel near PNS are also used for non-Navy activities including commercial and recreational boat traffic and receive discharges from municipal and industrial operations and treatment plants. The Piscataqua River is also used for commercial and recreational activities such as boating, fishing, and lobstering. Various vessels operate in Portsmouth Harbor, including commercial tankers, cargo ships, fishing trawlers, lobster boats, recreational vessels, and submarines located at PNS. Future uses of the offshore area of PNS are expected to be consistent with current uses.

PNS does not use groundwater for any purpose. Potable water is supplied to PNS from the Kittery Water District, which uses surface reservoirs located in the vicinity of York, Maine. The Piscataqua River is saline and is not suitable for human consumption.

2.7 SUMMARY OF SITE RISKS

The baseline risk assessment estimates what risks the site poses if no action was taken. It provides the basis for taking action and identifies the contaminants and exposure pathways that need to be addressed by the remedial action. An HHRA was conducted in 1994 and data were re-evaluated in 1998 to estimate the probability and magnitude of potential adverse human health effects from exposure to contaminants associated with OU4 using data collected as part of the EERA. In addition, a Public Health Assessment for the PNS offshore area was conducted by ATSDR in 2007.

An EERA for PNS was conducted to evaluate ecological risks for OU4. The EERA was conducted in two phases (Phase I in 1991 and Phase II in 1993) and included analysis and evaluation of various parameters including toxicity, population of several types of vegetation and aquatic life, and chemical analysis of sediment, surface water, and biological samples. The Final EERA Report was published in 2000.

2.7.1 Summary of Human Health Risk

The quantitative 1994 HHRA was conducted using chemical concentrations detected in surface water, sediment, and tissue (lobster, mussel, and flounder) samples collected at locations adjacent to PNS and at reference locations. The HHRA identified uses of the Piscataqua River including commercial and recreational fishing and lobstering. Fish include striped bass, bluefish, salmon, eels, cod, shad, smelt, river herring, flounder, and shellfish (e.g., mussel). The HHRA calculated potential human health risks using Phase I (1991) data. A comparison of Phase I and Phase II data was conducted to determine whether there were any impacts on the HHRA conclusions. Appendix D.1 provides summary information and tables related to human health risks for OU4.

Identification of Chemicals of Potential Concern

All chemicals that were detected in at least one sample were identified as COPCs for quantitation of risks. COPC identification did not consider whether the chemicals were site related or less than background concentrations. Maximum, mean, and 95-percent upper confidence limits (UCLs) on the mean were calculated for all of the COPCs.

Exposure Assessment

During the exposure assessment, current and potential future exposure pathways through which humans might come into contact with sediment, surface water, and/or biota were evaluated. Potential exposure routes for sediment include ingestion (swallowing small amounts of sediment) and dermal contact (skin exposure). Possible exposure routes for surface water include ingestion (swallowing small amounts of surface water). Possible exposure routes for biota include consumption of lobster tail flesh, consumption of whole lobster, consumption of mussel, and consumption of flounder filet. The HHRA considered receptor exposure under current and likely future land uses (recreation and subsistence fishing). Average and maximum concentrations were used as exposure point concentrations (EPCs) for calculation of average and maximum potential risks. Tables 3-1 through 3-58 from the 1994 HHRA, provided in Appendix D.1, provide exposure assessment input information including EPCs, ingestion rates, and exposure frequencies and durations.

Toxicity Assessment

Toxicity assessment involves identifying the types of adverse health effects caused by exposure to COPCs and determining the relationship between the magnitude of exposure and the severity of adverse effects (i.e., dose-response relationship) for each COPC. Based on the quantitative dose-response relationships determined, toxicity values for both cancer (cancer slope factor [CSF]) and non-cancer (reference dose [RfD]) effects were derived and used to estimate the potential for adverse effects. Tables 5A and 5-1 to 5-63 from the 1994 HHRA are provided in Appendix D.1 and include carcinogenic and non-carcinogenic hazard information.

Because published toxicity criteria are not available for lead, residential exposure to lead in at OU4 was evaluated using the Integrated Exposure Uptake Biokinetic (IEUBK) Model, as recommended by USEPA. The blood-lead concentration of a receptor is considered a key indicator of the potential for adverse health effects from lead contamination. The IEUBK Model calculates the probability of a receptor's blood-lead level exceeding 10 microgram per deciliter (μ g/dL), the minimum concentration considered to be a "concern." In addition, the USEPA goal is to limit the risk (i.e., probability) of exceeding a 10 μ g/dL blood-lead concentration to 5 percent of the population. Input information for the IEUBK Model analyses provided in Tables 5-64 to 5-69 from the 1994 HHRA are included in Appendix D.1.

Risk Characterization

During the risk characterization, the outputs of the exposure and toxicity assessments are combined to characterize the baseline risk (cancer risks and non-cancer hazards) at the site if no action was taken to address the contamination. Potential cancer risks and non-cancer hazards were calculated based on mean and maximum concentrations for recreational exposure and subsistence fishing.

For carcinogens, risks are generally expressed as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to the carcinogen. Excess lifetime cancer risk is calculated from the following equation:

$$Risk = CDI \times SF$$

where: risk = a unitless probability (e.g., 2 x 10⁻⁵) of an individual developing cancer CDI = chronic daily intake averaged over 70 years [in milligram/kilogram (mg/kg)-day] SF = slope factor (in mg/kg-day⁻¹)

These calculated risks are probabilities that are usually expressed in scientific notation (e.g., 1×10^{-6}). An excess lifetime cancer risk of 1×10^{-6} indicates that an individual has an "excess lifetime cancer risk" of one in a million in addition to the risks of cancer individuals face from other causes such as smoking or exposure to too much sun. The chance of an individual developing cancer from all other causes has been estimated to be as high as one in three. USEPA's generally acceptable risk range for site-related exposures is 1×10^{-6} to 1×10^{-4} .

17

The potential for non-carcinogenic effects is evaluated by comparing an exposure level over a specified time period (e.g., a lifetime) to an RfD derived for a similar exposure period. An RfD represents a level to which an individual may be exposed that is not expected to cause any deleterious effect. The ratio of exposure dose to the RfD is called a hazard quotient (HQ). An HQ less than 1 indicates that a receptor's dose of a single contaminant is less than the RfD and that toxic non-carcinogenic effects from that chemical are unlikely. The hazard index (HI) is typically generated by adding the HQs for all chemicals that affect the same target organ (e.g., liver) or that act through the same mechanism of action within a medium or across all media to which a given individual may be reasonably exposed. An HI less than 1 indicates that, based on the sum of all HQs from different contaminants and exposure routes, toxic non-carcinogenic effects from all contaminants are unlikely. An HI greater than 1 indicates that site-related exposures may present a risk to human health. The HQ is calculated as follows:

Non-cancer HQ = CDI / RfD

where: CDI = chronic daily intake

RfD = reference dose

CDIs and RFDs are expressed in the same units and represent the same exposure period (i.e., chronic, sub-chronic, or short-term).

For the HHRA, calculation of the HI did not identify the target organs affected by chemicals and target organ-based HIs were not calculated.

Tables 5-1 to 5-63 in the HHRA provide cancer risk and non-cancer hazard estimates for surface water and sediment exposure and for seafood ingestion and Tables 5-64 to 5-69 in the HHRA provide lead IEUBK results. A summary of the risk results is provided in Table 5A in the HHRA. These tables are included in Appendix D.1.

Total cancer risk estimates for exposure to surface water and sediment were less than 2 x 10⁻⁶ and were within or less than the acceptable USEPA risk range of 1 x 10⁻⁶ to 1 x 10⁻⁴. HIs were less than 1.0. Total cancer risk estimates for ingestion of seafood ranged from approximately 1 x10⁻⁴ to 6 x10⁻³, and HIs ranged from approximately 5 to 42. Lead risks for ingestion were acceptable. These risk estimates did not separate risks from background. Chemicals contributing to the risks were arsenic, pesticides (aldrin and DDE), PAHs, and PCBs. Based on studies within the Piscataqua River, concentrations of these chemicals causing potentially unacceptable risks around PNS were generally similar to or less than concentrations in background samples or in other coastal waters of Maine. In addition, the 2007 ATSDR Public Health Assessment for PNS concluded that adults and children consuming fish or shellfish, or wading in surface water or sediment are not likely to experience adverse health effects from the levels of chemicals in those media. For these reasons, human health risks were found to be acceptable, and no monitoring stations require remedial action based on human health risks.

2.7.2 Summary of Ecological Risk

An EERA was conducted at PNS that evaluated risks to ecological receptors in the offshore area. The purpose of the EERA was to assess potential adverse environmental effects from past discharges of contaminants from PNS to the offshore environments of the Piscataqua River and Great Bay Estuary. Two functional phases of the EERA were developed to fulfill this objective. Phase I of the EERA, initiated in September 1991 and completed in May 1993, assessed environmental quality in the Great Bay Estuary, focusing on the lower Piscataqua River area. The objective of Phase II of the EERA, initiated in July 1992 and completed in summer 1995, was to test hypotheses from Phase I and characterize the ecological risk from PNS. Studies conducted during Phase I included a chemical markers evaluation; sediment textural description; water column conditions evaluation; infaunal invertebrate assessment; microbiological contamination studies; sediment and water column toxicity tests; eelgrass community investigation; macroalgal community assessment; flounder and lobster population assessment; blue mussel population survey; deployment of blue mussels for tissue residue analysis; and chemical analyses

of various media from Great Bay Estuary evaluation. During Phase II, studies included a chemical marker evaluation, sediment textural description; eelgrass community investigation; lobster use of eelgrass habitat studies; salt marsh community investigation; microbiological contamination studies; winter flounder investigation; blue mussel population study; infaunal invertebrate assessment; contaminant levels in lobster, mussel, eelgrass, and winter flounder evaluation; exposure and response investigations; estuarine dynamics and water quality assessment; and water column conditions characterization.

Phase I and Phase II data and conclusions were synthesized to assess potential risks to the estuarine environment in the vicinity of PNS. A model was developed for the EERA that described exposure pathways for contaminants, identified habitats and components of the ecosystem at risk, and defined AOCs around PNS. The habitats and components of the ecosystem at risk were grouped as assessment endpoints for the evaluation of risk. Communities selected as assessment endpoints to assess their vitality and related exposure levels to potential effects were pelagic, epibenthic, benthic, eelgrass, salt marsh, and avian. Data were developed to evaluate stressor exposure level and to assess ecological effects. Screening procedures were conducted to identify contaminants and areas of concern and to identify links to sources of contaminant releases from PNS.

Measurements of chemical concentrations in water, sediment, and tissues of estuarine receptors, and measurements of the health and status of ecological receptors were conducted in the AOCs and in reference areas to evaluate ecological risk. A weight-of-evidence approach was used to characterize risk for each assessment endpoint at each AOC. The weight-of-evidence approach considered the strengths and weaknesses of the various measurement methods of exposure and effect to draw conclusions from the multiple measures collected during the EERA. Tables 1-1 to 1-3, 4-1 to 4-3, 7-1 to 7-13, and 8-1 from the EERA that show the routes of exposure and measurement for chemical concentrations, assessment endpoints, weight-of-evidence evaluations, and risk conclusions are provided in Appendix D.2.

The conclusion of the EERA was that most AOCs had either low or intermediate overall risk. No assessment endpoints had high risk. The ecological risks for each assessment endpoint were linked to surface water and/or sediment exposure for chemicals that may have originated from onshore IR Program sites (i.e., COPCs). COPCs were identified as the chemicals that were more likely to exceed benchmark concentrations than ambient concentrations were likely to exceed benchmark concentrations, and that could be linked to an onshore IR Program site. Risks for exposure to surface water were low or negligible for all of the AOCs. Risks for exposure to sediment were low for Clark Cove and Jamaica Cove AOCs and intermediate for Sullivan Point, Dry Dock, and Back Channel AOCs. Sediment was not present at the DRMO Storage Yard AOC. The COPCs identified for the AOCs included metals, PCBs, and PAHs.

The results of the EERA were used to develop the Interim Offshore Monitoring Program for OU4. Based on the intermediate risks for sediment, sediment monitoring was conducted as a primary measure to determine whether the interim RAOs were being met. Monitoring stations were identified to represent the AOCs as shown in Table 2-2.

TABLE 2-2. AOCS AND ASSOCIATED MONITORING STATIONS				
AOC	MONITORING STATION			
Clark Cove	MS-07, MS-08, MS-09			
Sullivan Point	MS-10			
DRMO Storage Yard	MS-11			
Dry Docks	MS-12, MS-13, MS-14			
Back Channel	MS-01, MS-02, MS-03, MS-04			
Jamaica Cove	MS-05, MS-06			

To support the Interim Offshore Monitoring Program, sediment-based PRGs were developed for use as IRGs to provide quantitative means for evaluating the interim monitoring data. The PRGs were developed using site-specific sediment and pore-water toxicity testing data and associated sediment and

pore-water chemical concentrations for samples collected during Round 2 of the Interim Offshore Monitoring Program. The PRGs were developed for chemicals potentially causing the greatest offshore impact, termed the "limiting COCs." Toxicity test results were used to identify non-toxic and toxic samples. Pore-water concentrations for non-toxic and toxic samples for the monitoring stations were compared to surface water quality criteria and reference pore-water concentrations to ensure that the concentrations of potential risk (referred to as threshold effect levels) were not less than the criteria or reference concentrations. The pore water-based threshold effect levels were used to identify the limiting COCs and the associated sediment concentrations representing potential risk. The calculated, sitespecific, sediment-based PRGs were then compared to the risk conclusions of the EERA to determine whether exeedances of PRGs coincided with areas associated with low or intermediate risk. The resultant PRGs were then used as the basis for development of the IRGs for the following limiting COCs: copper, nickel, acenaphthylene, anthracene, fluorene, and HMW PAHs. Lead was not identified as a limiting COC; however, because onshore sources of lead contamination existed at some of the sites, a literature value (NOAA Incidence of Adverse Biological Effects within Ranges of Chemical Concentration in Marine and Estuarine Sediments) was used to evaluate lead data. Because the copper and nickel IRGs were approximately two times NOAA's effects range-median (ER-M), two times the ER-M was used as the IRG for lead.

The IRGs were used to evaluate sediment data collected as part of the Interim Offshore Monitoring Program. Based on an evaluation of the first 10 rounds of offshore monitoring data, along with other sediment data collected at some of the monitoring stations, chemicals presenting an ecological risk in sediment were retained as COCs at four monitoring stations (MS-01, MS-03, MS-04, and MS-12) (see Table 2-3). There is not sufficient sediment to cause ecological risk at MS-11 and there were no COCs with current concentrations presenting ecological risk at MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-13, or MS-14. Based on current concentrations at MS-01, MS-03, MS-04, and MS-12, nickel is not a COC for any of these stations.

TABLE 2-3. CHEMICALS RETAINED AS COCS AT EACH MONITORING STATION						
COC	MS-01	MS-03	MS-04	MS-12A	MS-12B	
Copper		X	X			
Lead				X	X	
Acenaphthylene	X		X	X		
Anthracene	X		X	Х		
Fluorene	X		X	X		
HMW PAHs	X		Х	Х		

2.7.3 Basis for Action

As a result of past activities at onshore IR Program sites, contamination is present in sediment at OU4 offshore of PNS at concentrations that could result in unacceptable risks to benthic invertebrates if action is not taken to prevent exposure to contaminated sediment at MS-01, MS-03, MS-04, and MS-12. Based on potential site risks, the COCs identified are copper, lead, acenaphthylene, anthracene, fluorene, and HMW PAHs. Because risks were identified under current and future potential land use scenarios for benthic invertebrates, a response action is necessary to protect the environment from actual or threatened releases of hazardous substances into the environment, which may present an imminent and substantial endangerment to ecological receptors.

2.8 REMEDIAL ACTION OBJECTIVES

RAOs are medium-specific goals that define the objective of conducting remedial actions to protect human health and the environment. RAOs specify the COCs, potential exposure routes and receptors, and acceptable concentrations (i.e., cleanup levels) for a site and provide a general description of what

the cleanup will accomplish. RAOs typically serve as the design basis for the remedial alternatives described in Section 2.9. The RAO developed for OU4 considering current and future land use at PNS is as follows:

Eliminate unacceptable risk to ecological benthic receptors exposed to site-related COCs in suitable sediment habitats.

The sediment cleanup levels for benthic invertebrates were developed in the OU4 FS and are based on site-specific sediment and pore-water toxicity tests conducted as part of the Interim Offshore Monitoring Program (as discussed in Section 2.7.2). These cleanup levels are sediment-based values that are protective of sensitive ecological receptors (i.e., benthic invertebrates) exposed to COCs in sediment at OU4. The cleanup levels are goals for representative exposure concentrations across the monitoring station and not intended as maximum allowable or pick-up levels. Cleanup levels for COCs at OU4 are summarized in Table 2-4.

TABLE 2-4. CLEANUP LEVELS						
coc	SEDIMENT CLEANUP LEVEL FOR BENTHIC INVERTEBRATES	Basis	MONITORING STATION			
Copper	486 mg/kg	IRG	MS-03, MS-04			
Lead	436 mg/kg	two times ER-M	MS-12A, MS-12B			
Acenaphthylene	210 microgram/kilogram (μg/kg)	IRG	MS-01, MS-04, MS-12A			
Anthracene	1,236 μg/kg	IRG	MS-01, MS-04, MS-12A			
Fluorene	500 μg/kg	IRG	MS-01, MS-04. MS-12A			
HMW PAHs	13,057 μg/kg	IRG	MS-01, MS-04, MS-12A			

2.9 DESCRIPTION OF ALTERNATIVES

To address potential unacceptable ecological risks associated with contamination at OU4, a preliminary technology screening evaluation was conducted in the FS. The general response actions are presented in Table 2-5.

Table 2-5. General Response Actions					
GENERAL RESPONSE ACTION	TECHNOLOGY	PROCESS OPTIONS			
No Action	None	Not Applicable			
	LUCs	Active Controls: Physical Barriers/Security Guards			
Limited Action		Passive Controls: Land Use Restrictions			
Limited Action	Monitoring	Sampling and Analysis			
	Monitored Natural Recovery	Sampling to Assess Degradation of Contaminants			
Containment	Source Containment	Barrier Installation			
		Mechanical Removal			
Removal	Bulk Excavation/Dredging	Mechanical Dredging			
		Hydraulic Dredging			
Ex-Situ Treatment	Physical/Chemical	Dewatering			
Disposal	Landfill/Recycling	Off-Yard Landfilling/Recycling			

The technologies and process options retained after detailed screening were assembled into remedial alternatives. MS-01 was evaluated separately. The types and concentrations of contaminants at MS-03 and MS-04 are similar; therefore, the areas were combined for development of cleanup alternatives. MS-12 was separated into two areas for development of remedial alternatives, MS-12A and MS-12B. Consistent with the NCP, the no action alternative was evaluated as a baseline for comparison with other alternatives during the comparative analysis. Tables 2-6, 2-7, 2-8, and 2-9 describe the major components and provide cost estimates for remedial alternatives developed for MS-01, MS-03 and MS-04, MS-12A, and MS-12B, respectively.

TABLE 2-6. SUMMARY	TABLE 2-6. SUMMARY OF REMEDIAL ALTERNATIVES EVALUATED – MS-01						
ALTERNATIVE	COMPONENTS	DETAILS	Соѕт				
Alternative MS01-01: No Action No action to address contamination, and no use restrictions	No action would be conducted	Five-year reviews would not be included under the no action alternative.	<u>Cost</u> : \$0				
Alternative MS01-02: Monitored Natural Recovery	LUCs	LUCs to prevent unauthorized disturbance of sediment until concentrations of COCs are at acceptable levels.	<u>Capital</u> : \$17,094 <u>30-Year NPW</u> : \$311,538				
Sediment monitoring to evaluate natural recovery, with LUCs to prevent sediment disturbance	Monitoring	Sediment sampling for PAHs to determine when concentrations have decreased to acceptable levels.					
Alternative MS01-03: Hydraulic Dredging with Off-Yard Disposal	Sediment Removal	Removal of contaminated sediment within MS-01 to reduce PAH concentrations to acceptable levels.	<u>Capital</u> : \$917,661 <u>30-Year NPW</u> : \$917,661				
Dredging of contaminated sediment from approximately 0 to 2 feet bss, with dewatering and off-yard	Sampling	Sampling during dredging activities to monitor the effectiveness of sediment migration controls. Confirmation sampling to make sure that contaminated sediment is removed.					
disposal.	Dewatering	Removal of water from excavated sediment before off-yard disposal.					
	Off-Yard Disposal	Transportation and disposal of all dredged sediment to an off-yard treatment, storage, and disposal (TSD) facility upon completion of dewatering and characterization.					

TABLE 2-7. SUMMARY OF REMEDIAL ALTERNATIVES EVALUATED – MS-03 AND MS-04				
ALTERNATIVE	COMPONENTS	DETAILS	Соѕт	
Alternative MS0304-01: No Action	No action would be conducted	Five-year reviews would not be included under the no action alternative.	<u>Cost</u> : \$0	
No action to address contamination, and no use restrictions				

Table 2-7. Summary of Remedial Alternatives Evaluated – MS-03 and MS-04				
ALTERNATIVE	COMPONENTS	DETAILS	Cost	
Alternative MS0304-02: Monitoring Natural Recovery	LUCs	LUCs to prevent unauthorized disturbance of sediment until concentrations of COCs are at acceptable levels.	<u>Capital:</u> \$17,094 <u>30-Year NPW</u> : \$323,481	
Sediment monitoring to evaluate natural recovery, with LUCs to prevent sediment disturbance	Monitoring	Sediment sampling for copper at MS-03 and PAHs and copper at MS-04 to determine when concentrations have decreased to acceptable levels.		
Alternative MS0304-03 Hydraulic Dredging with Off-Yard Disposal	Sediment Removal	Removal of contaminated sediment within MS-03 and MS-04 to reduce copper and PAH concentrations to acceptable levels	<u>Capital:</u> \$745,410 <u>30-Year NPW:</u> \$745,410	
Dredging of contaminated sediment from approximately 0 to 2 feet bss in one area, and 0 to 1 foot bss in	Sampling	Sampling during dredging activities to monitor the effectiveness of sediment migration controls. Confirmation sampling to make sure that contaminated sediment is removed.		
two areas, with dewatering and off-yard disposal	Dewatering	Removal of water from excavated sediment before off-yard disposal.		
3.00000.	Off-Yard Disposal	Transportation and disposal of all dredged sediment to an off-yard TSD facility upon completion of dewatering and characterization.		

TABLE 2-8. SUMMARY OF REMEDIAL ALTERNATIVES EVALUATED – MS-12A				
ALTERNATIVE	COMPONENTS	DETAILS	Cost	
Alternative MS12A-01: No Action No action to address contamination, and no use restrictions	No action would be conducted	Five-year reviews would not be included under the no action alternative.	<u>Cost</u> : \$0	
Alternative MS12A-02: Containment, LUCs, and Monitoring Natural Recovery Containment with LUCs and monitoring for sediment inside Building 178, sediment monitoring to evaluate natural recovery outside Building 178	Containment Barrier	Construction of a concrete wall as a containment barrier on the outside of Building 178 to prevent sediment within the intertidal area of Building 178 from migrating into the Piscataqua River.	<u>Capital:</u> \$369,626 <u>30-Year NPW</u> : \$675,807	
	LUCs	LUCs to ensure that the containment barrier continues to function as designed.		
	Inspection and Monitoring for Containment System	Inspection to verify the continued integrity of the containment system. Monitoring to ensure that contamination in sediment contained within the building is not adversely impacting sediment outside the building.		
	Monitoring	Sediment sampling for PAHs and lead on the ramp outside Building 178 to determine when concentrations have decreased to acceptable levels.		

ALTERNATIVE	OF REMEDIAL ALTERNATIVES EVALUATED – MS-12A COMPONENTS DETAILS COST				
ALTERNATIVE Alternative MS12A-03 Partial Removal, Off- Yard Disposal, Containment, and LUCs	Sediment Removal	Removal of contaminated sediment in the tidal zone outside of Building 178, outside the limits of the eelgrass bed, to reduce PAH and lead concentrations to acceptable levels.	Capital: \$1,305,682 30-Year NPW: \$1,601,353		
Dredging of contaminated sediment	Dewatering	Removal of water from excavated sediment before off-yard disposal.			
from approximately 0 to 1.5 feet bss on ramp outside Building 178, dewatering, and off-yard disposal, and	Off-Yard Disposal	Transportation and disposal of all dredged sediment to an off-yard TSD facility upon completion of dewatering and characterization.			
containment, LUCs, and inspections of sediment within Building 178	Containment	Construction of a concrete wall as a containment barrier on the outside of Building 178 to prevent sediment on the within the intertidal area of Building 178 from migrating into the Piscataqua River.			
	LUCs	LUCs to ensure that the containment barrier continues to function as designed.			
	Inspections	Inspection to verify the continued integrity of the containment system.			
Alternative MS12A-04 Complete Removal with Off-Yard Disposal Dredging of contaminated sediment from approximately 0 to 1.5 feet bss on ramp outside Building 178, physical removal of sediment within Building 178, dewatering, and off-yard disposal	Sediment Removal	Removal of contaminated sediment in the tidal zone outside of Building 178, outside the limits of the eelgrass bed, to reduce PAH and lead concentrations to acceptable levels.	Capital: \$1,134,478 30-Year NPW: \$1,134,478		
	Physical Removal	Removal of sediment on the ramp within the intertidal area of Building 178 via power washing and/or physical removal (shovels, push-brooms, etc.) as needed to remove sediment from within the building.			
	Sampling	Sampling during dredging activities to monitor the effectiveness of sediment migration controls. Confirmation sampling to make sure that contaminated sediment is removed.			
	Dewatering	Removal of water from excavated sediment before off-yard disposal.			
	Off-Yard Disposal	Transportation and disposal of all removed sediment to an off-yard TSD facility upon completion of dewatering and characterization.			

TABLE 2-9. SUMMARY OF REMEDIAL ALTERNATIVES EVALUATED – MS-12B				
ALTERNATIVE	COMPONENTS	DETAILS	Соѕт	
Alternative MS12B-01: No Action No action to address contamination, and no use restrictions	No action would be conducted	Five-year reviews would not be included under the no action alternative.	<u>Cost</u> : \$0	
Alternative MS12B-02: Monitored Natural Recovery	LUCs	LUCs to prevent unauthorized disturbance of sediment until concentrations of COCs are at acceptable levels.	Capital: \$17,094 30-Year NPW: \$309,149	
Sediment monitoring to evaluate natural recovery, with LUCs to prevent sediment disturbance	Monitoring	Sediment sampling for lead to determine when concentrations have decreased to acceptable levels.		
Alternative MS12B-03 Hydraulic Dredging with Off-Yard Disposal	Sediment Removal	Removal of contaminated sediment within MS-12B to reduce lead concentrations to acceptable levels.	Capital: \$428,824 30-Year NPW: \$428,824	
Dredging of contaminated sediment from approximately 0 to 0.5 feet bss, with dewatering and off-yard	Sampling	Sampling during dredging activities to monitor the effectiveness of sediment migration controls. Confirmation sampling to make sure that contaminated sediment is removed.		
disposal	Dewatering	Removal of water from excavated sediment before off-yard disposal.		
	Off-Yard Disposal	Transportation and disposal of all dredged sediment to an off-yard TSD facility upon completion of dewatering and characterization.		

2.10 COMPARATIVE ANALYSIS OF ALTERNATIVES

Tables 2-10, 2-11, 2-12, and 2-13 and subsequent text in this section summarize the comparison of the remedial alternatives with respect to the nine CERCLA evaluation criteria outlined in the NCP at 40 CFR 300.430 (e)(9)(iii) and categorized as threshold, primary balancing, and modifying. Further information on the detailed comparison of remedial alternatives is presented in the OU4 FS.

CRITERION	MS01-01	MS01-02	MS01-03
Estimated Time Frame (months)		•	
Designing and Constructing the Alternative	NA	12	15
Achieving the Cleanup Objectives	NA	24-48	15
Criteria Analysis			
Threshold Criteria			
Protects Human Health and the Environment Will it protect you and the animal life on and near the site?	0	•	•
Meets federal and state regulations Does the alternative meet federal and state environmental statutes, regulations, and requirements?	0	•	•
Primary Balancing Criteria		•	
Provides long-term effectiveness and is permanent > Will the effects of the cleanup last?	0	0	•
Reduces mobility, toxicity, and volume of contaminants through treatment Are the harmful effects of the contaminants, their ability to spread, and the amount of contaminated material present reduced?	0	0	0
Provides short-term protection How soon will the site risks be reduced? Are there hazards to workers, residents, or the environment that could occur during cleanup?	NA	•	0
Can it be implemented > Is the alternative technically feasible? > Are the goods and services necessary to implement the alternative readily available?	NA	•	o
Cost (\$) Upfront costs to design and construct the alternative (capital costs) Operating and maintaining any system associated with the alternative (O&M costs) Periodic costs associated with the alternative Total cost in today's dollars (NPW cost)	\$0	\$17,094 capital 30-year NPW: \$311,538	\$917,661capi 30-year NPV \$917,661
Modifying Criteria			
State Agency Acceptance Does MEDEP agree with the Navy's recommendation?		with Alternative MS nce is included in A	
Community Acceptance What objections, suggestions, or modifications does the public offer during the comment period? Comments received during the public comment period support Alternative MS01-03. Section provides the Responsiveness Summary. Public comments received and responses are provided to the public comment period support Alternative MS01-03. Section provides the Responsiveness Summary. Public comments received during the public comments received support Alternative MS01-03. Section provides the Responsiveness Summary. Public comments received and responses are provided and response ar			Section 3.0 nary. Public

CRITERION	MS0304-01	MS0304-02	MS0304-03
Estimated Time Frame (months)			
Designing and Constructing the Alternative	NA	12	15
Achieving the Cleanup Objectives	NA	60-120	15
Criteria Analysis			
Threshold Criteria			
Protects Human Health and the Environment Will it protect you and the animal life on and near the site?	0	•	•
Meets federal and state regulations Does the alternative meet federal and state environmental statutes, regulations, and requirements?	0	•	•
Primary Balancing Criteria			
Provides long-term effectiveness and is permanent Will the effects of the cleanup last?	0	0	•
Reduces mobility, toxicity, and volume of contaminants through treatment Are the harmful effects of the contaminants, their ability to spread, and the amount of contaminated material present reduced?	0	0	0
Provides short-term protection How soon will the site risks be reduced? Are there hazards to workers, residents, or the environment that could occur during cleanup?	NA	•	0
Can it be implemented Is the alternative technically feasible? Are the goods and services necessary to implement the alternative readily available?	NA	•	•
Cost (\$) Upfront costs to design and construct the alternative (capital costs) Operating and maintaining any system associated with the alternative (O&M costs) Periodic costs associated with the alternative Total cost in today's dollars (NPW cost)	\$0	\$17,904 capital 30-year NPW: \$323,481	\$745,410 capital 30-year NPW: \$745,410
Modifying Criteria			
State Agency Acceptance Does MEDEP agree with the Navy's recommendation?	MEDEP concurs w letter of concurrence	ce is included in Ap	pendix A.
Community Acceptance > What objections, suggestions, or modifications does the public offer during the comment period?	Comments received during the public comment period support Alternative MS0304-03. Section 3.0 provides the Responsiveness Summary. Public comments received and responses are provided in Appendix C.		

Criterion	MS12A-01	MS12A-02	MS12A-03	MS12A-04
Estimated Time Frame (months)				
Designing and Constructing the Alternative	NA	13	15	15
Achieving the Cleanup Objectives	NA	60-120	15	15
Criteria Analysis				
Threshold Criteria				
Protects Human Health and the Environment Will it protect you and the animal life on and near the site?	0	•	•	•
Meets federal and state regulations Does the alternative meet federal and state environmental statutes, regulations, and requirements?	0	•	•	•
Primary Balancing Criteria				
Provides long-term effectiveness and is permanent Will the effects of the cleanup last?	0	0	0	•
Reduces mobility, toxicity, and volume of contaminants through treatment Are the harmful effects of the contaminants, their ability to spread, and the amount of contaminated material present reduced?	0	0	0	0
Provides short-term protection How soon will the site risks be reduced? Are there hazards to workers, residents, or the environment that could occur during cleanup?	NA	o	•	•
Can it be implemented > Is the alternative technically feasible? > Are the goods and services necessary to implement the alternative readily available?	NA	•	•	0
Cost (\$) Upfront costs to design and construct the alternative (capital costs) Operating and maintaining any system associated with the alternative (O&M costs) Periodic costs associated with the alternative Total cost in today's dollars (NPW cost)	\$0	\$369,626 capital 30-year NPW: \$675,807	\$1,305,682 capital 30-year NPW: \$1,601,353	\$1,134,478 capital 30-year NPW: \$1,134,478
Modifying Criteria				
State Agency Acceptance Does MEDEP agree with the Navy's recommendation?	concurrence is	ırs with Alternati included in App	pendix A.	
Community Acceptance What objections, suggestions, or modifications does the public offer during the comment period? Relative comparison of the nine balancing criteria and each	Comments received during the public comment period support Alternative MS12A-04. Section 3.0 provides the Responsiveness Summary. Public comments received and responses are provided in Appendix C.			

CRITERION	MS12B-01	MS12B-02	MS12B-03
Estimated Time Frame (months)			
Designing and Constructing the Alternative	NA	12	14
Achieving the Cleanup Objectives	NA	24-48	14
Criteria Analysis			
Threshold Criteria			
Protects Human Health and the Environment Will it protect you and the animal life on and near the site?	0	•	•
Meets federal and state regulations Does the alternative meet federal and state environmental statutes, regulations, and requirements?	0	•	•
Primary Balancing Criteria			
Provides long-term effectiveness and is permanent Will the effects of the cleanup last?	0	0	•
Reduces mobility, toxicity, and volume of contaminants through treatment Are the harmful effects of the contaminants, their ability to spread, and the amount of contaminated material present reduced?	0	0	0
Provides short-term protection How soon will the site risks be reduced? Are there hazards to workers, residents, or the environment that could occur during cleanup?	NA	o	0
Can it be implemented Is the alternative technically feasible? Are the goods and services necessary to implement the alternative readily available?	NA	•	o
Cost (\$) Upfront costs to design and construct the alternative (capital costs) Operating and maintaining any system associated with the alternative (O&M costs) Periodic costs associated with the alternative Total cost in today's dollars (NPW cost)	\$0	\$17,094 capital 30-year NPW: \$309,149	\$428,824 capital 30-year NPW \$428,824
Modifying Criteria			
State Agency Acceptance Does MEDEP agree with the Navy's recommendation?	MEDEP concurs with Alternative MS12B-03, and a lette of concurrence is included in Appendix A.		
Community Acceptance What objections, suggestions, or modifications does the public offer during the comment period? Relative comparison of the nine balancing criteria and each	Comments received during the public comment period support Alternative MS12B-03. Section 3.0 provides the Responsiveness Summary. Public comments received and responses are provided in Appendix C.		

Threshold Criteria - MS-01

Overall Protection of Human Health and the Environment. The no action alternative would not achieve the RAO and would not protect the environment; therefore, it is not discussed further in this ROD. Both of the other MS-01 alternatives would be protective of human health and the environment.

Alternatives MS01-02 and MS01-03 are both consistent with current and reasonably anticipated industrial land use and would be equally protective of the environment because these alternatives would address contaminated sediment, through monitored natural recovery and removal, respectively, thereby preventing unacceptable exposure of ecological receptors. MS01-03 would prevent exposure to ecological receptors immediately upon implementation rather than relying on natural recovery to gradually decrease COC concentrations over time. LUCs would be required under MS01-02 until concentrations of COCs decrease to acceptable levels.

Compliance with ARARs. Applicable or Relevant and Appropriate Requirements (ARARs) include any federal or state standards, requirements, criteria, or limitations determined to be legally applicable or relevant and appropriate to the site or remedial action. Alternatives MS01-02 and MS01-03 would meet the alternative-specific ARARs.

Primary Balancing Criteria – MS-01

Long-Term Effectiveness and Permanence. Alternative MS01-03 would provide greater long-term effectiveness and permanence than Alternative MS01-02. Alternative MS01-02 would depend on naturally occurring processes to reduce COC concentrations to acceptable levels prior to achieving long-term effectiveness and permanence. Alternative MS01-02 would include monitoring to determine when cleanup levels are achieved. Alternative MS01-03 would provide long-term effectiveness and permanence upon implementation by removing contaminated sediment, thus preventing ecological receptors from coming into contact with the contaminated sediment.

Reduction in Toxicity, Mobility, or Volume Through Treatment. Neither MS-01 alternative would involve an active process that would reduce the toxicity, mobility, or volume of COCs through treatment.

Short-Term Effectiveness. Alternative MS01-02 would have minimal short-term effectiveness concerns. Implementation of LUCs and monitoring would not adversely impact the surrounding community or the environment. Alternative MS01-03 would have some short-term effectiveness concerns for remediation construction workers and the environment related to removal and processing of contaminated material. However, these concerns could be effectively controlled using personal protective equipment (PPE), compliance with proper site-specific health and safety procedures, and use of best management practices (BMPs) to prevent exposure to and migration of contamination during construction and disposal activities.

Implementability. Alternative MS01-02 would have relatively few implementation difficulties because this alternative would include only development of a LUC remedial design (RD) and monitoring plan to document the necessary LUCs and monitoring. Alternative MS01-03 would be more difficult because this alternative would involve dredging, processing, and off-yard transportation and disposal of contaminated sediment. These activities would require additional access to the Shipyard and Shipyard offshore area, which would require coordination with Shipyard personnel for access to the facility and traffic control at the site. Alternative MS01-03 would use more fuel energy and landfill space than Alternative MS01-02. As a result, Alternative MS01-02 would have a smaller remedial carbon footprint than Alternative MS01-03.

Cost. The NPW costs for Alternatives MS01-02 and MS01-03 are \$311,538 and \$917,661, respectively.

Modifying Criteria – MS-01

State Acceptance. State involvement has been solicited throughout the CERCLA process. MEDEP, as the designated support agency in Maine, concurs with the MS-01 Selected Remedy.

Community Acceptance. No comments were received that changed the preferred remedial alternative for MS-01.

Threshold Criteria - MS-03 and MS-04

Overall Protection of Human Health and the Environment. The no action alternative would not achieve the RAO and would not protect the environment; therefore, it is not discussed further in this ROD. Both of the other MS-03/MS-04 alternatives would be protective of human health and the environment.

Alternatives MS0304-02 and MS0304-03 are both consistent with current and reasonably anticipated industrial land use and would be equally protective of the environment because these alternatives would address contaminated sediment, through monitored natural recovery and removal, respectively, thereby preventing unacceptable exposure of ecological receptors. Alternative MS0304-03 would prevent exposure to ecological receptors immediately upon implementation rather than relying on natural recovery to gradually decrease COC concentrations over time. LUCs would be required under Alternative MS0304-02 until concentrations of COCs decrease to acceptable levels.

Compliance with ARARs. ARARs include any federal or state standards, requirements, criteria, or limitations determined to be legally applicable or relevant and appropriate to the site or remedial action. Alternatives MS0304-02 and MS0304-03 would meet the alternative-specific ARARs.

Primary Balancing Criteria - MS-03 and MS-04

Long-Term Effectiveness and Permanence. Alternative MS0304-03 would provide greater long-term effectiveness and permanence than Alternative MS0304-02. Alternative MS0304-02 would depend on naturally occurring processes to reduce COC concentrations to acceptable levels prior to achieving long-term effectiveness and permanence. Alternative MS0304-02 would include monitoring to determine when cleanup levels are achieved. Alternative MS0304-03 would provide long-term effectiveness and permanence upon implementation by removing contaminated sediment, thus preventing ecological receptors from coming into contact with the contaminated sediment.

Reduction in Toxicity, Mobility, or Volume Through Treatment. Neither MS-03/MS-04 alternative would involve an active process that would reduce the toxicity, mobility, or volume of COCs through treatment.

Short-Term Effectiveness. Alternative MS0304-02 would have minimal short-term effectiveness concerns. Implementation of LUCs and monitoring would not adversely impact the surrounding community or the environment. Alternative MS0304-03 would have some short-term effectiveness concerns for remediation construction workers and the environment related to removal and processing of contaminated material. However, these concerns could be effectively controlled using PPE, compliance with proper site-specific health and safety procedures, and use of BMPs to prevent exposure to and migration of contamination during construction and disposal activities.

Implementability. Alternative MS0304-02 would have relatively few implementation difficulties because this alternative would include only development of a LUC RD and monitoring plan to document the necessary LUCs and monitoring. Alternative MS0304-03 would be more difficult because this alternative would involve dredging, processing, and off-yard transportation and disposal of contaminated sediment. These activities would require additional access to the Shipyard and Shipyard offshore area, which would require coordination with Shipyard personnel for access to the facility and traffic control at the site. Alternative MS0304-03 would use more fuel energy and landfill space than Alternative MS0304-02. As a result, Alternative MS0304-02 would have a smaller remedial carbon footprint than Alternative MS0304-03.

Cost. The NPW costs for Alternatives MS0304-02 and MS0304-03 are \$323,481 and \$745,410 respectively.

31

Modifying Criteria - MS-03 and MS-04

State Acceptance. State involvement has been solicited throughout the CERCLA process. MEDEP, as the designated support agency in Maine, concurs with the MS-03/MS-04 Selected Remedy.

Community Acceptance. No comments were received that changed the preferred remedial alternative for MS-03/MS-04.

Threshold Criteria - MS-12A

Overall Protection of Human Health and the Environment. The no action alternative would not achieve RAOs and would not protect human health and the environment; therefore, it is not discussed further in this ROD. All of the other MS-12A alternatives would be protective of human health and the environment.

Alternatives MS12A-02, MS12A-03, and MS12A-04 are consistent with current and reasonably anticipated industrial land use and would be protective of human health and the environment. Alternatives MS12A-02 and MS12A-03 rely on a containment system to prevent contamination in the intertidal portion of Building 178 from migrating to offshore sediment. MS12A-04 would involve removing the contaminated sediment within Building 178. LUCs and inspections would be required for the containment system to ensure that it continues to function over the long term. For contaminated sediment on the ramp outside of Building 178, monitored natural recovery would prevent exposure under Alternative MS12A-02, and sediment removal would prevent exposure under Alternatives MS12A-03 and MS12A-04.

Compliance with ARARs. ARARs include any federal or state standards, requirements, criteria, or limitations determined to be legally applicable or relevant and appropriate to the site or remedial action. Alternatives MS12A-02 through MS12A-04 would meet the alternative-specific ARARs.

Primary Balancing Criteria – MS-12A

Long-Term Effectiveness and Permanence. Alternative MS12A-04 would have the greatest long-term effectiveness and permanence because all sediment contamination associated with potentially unacceptable risk would be removed from MS-12A. Long-term effectiveness and permanence is slightly better for Alternative MS12A-03 than Alternative MS12A-02. Alternative MS12A-03 would be effective and would permanently remove sediment contamination from outside Building 178; however, continued operation of the containment system would be required for contamination inside Building 178. Alternative MS12A-02 would eventually provide long-term effectiveness and permanence once COC concentrations are reduced to acceptable levels. The containment barrier associated with MS12A-02 would be effective in preventing the migration of Building 178 contaminants to the Piscataqua River but would require long-term inspections and maintenance to ensure effectiveness.

Reduction in Toxicity, Mobility, or Volume Through Treatment. None of the alternatives being considered would involve an active process that would reduce the toxicity, mobility, or volume of COCs through treatment.

Short-Term Effectiveness. Alternatives MS12A-02, MS12A-03, and MS12A-04 would have similar short-term effectiveness concerns for remediation construction workers and the environment related to placement of the containment barrier (MS12A-02 and MS12A-03) and for removal and processing of contaminated material (MS12A-03 and MS12A-04). However, these concerns for each alternative could be effectively controlled using PPE, compliance with proper site-specific health and safety procedures, and use of BMPs to prevent exposure to and migration of contamination during construction and disposal activities.

Implementability. Alternative MS12A-02 would be the easiest to implement because it does not involve the removal of sediment and because construction activities would be kept to a minimum with the construction of a concrete block wall. Alternative MS12A-04 would be more difficult to implement than Alternative MS12A-03 because Alternative MS12A-04 would also require the removal of sediment inside Building 178 in addition to removal of sediment outside Building 178. All the alternatives would have similar requirements for access to the Shipyard and Shipyard offshore area, which would require coordination with Shipyard personnel for access to the facility and traffic control at the site. Alternative MS12A-02 would require the least amount of energy usage. Alternatives MS12A-03 and MS12A-04 would require a significant amount of fuel energy and landfill space use. Of the two, Alternative MS12A-03 would not use as much energy or landfill space as Alternative MS12A-04. Alternative MS12A-04 would have the smallest remedial carbon footprint, followed by Alternative MS12A-03, and then Alternative MS12A-04.

Cost. The NPW costs for Alternatives MS12A-02, MS12A-03, and MS12A-04 are \$675,807, \$1,601,353, and \$1,134,478, respectively.

Modifying Criteria – MS-12A

State Acceptance. State involvement has been solicited throughout the CERCLA process. MEDEP, as the designated support agency in Maine, concurs with the Selected Remedy for MS-12A.

Community Acceptance. No comments were received that changed the preferred remedial alternative for MS-12A.

Threshold Criteria – MS-12B

Overall Protection of Human Health and the Environment. The no action alternative would not achieve RAOs and would not protect human health and the environment; therefore, it is not discussed further in this ROD. Both of the other MS-12B alternatives would be protective of human health and the environment.

Alternatives MS12B-02 and MS12B-03 are both consistent with current and reasonably anticipated industrial land use and would be equally protective of the environment because these alternatives would address contaminated sediment, through monitored natural recovery and removal, respectively, thereby preventing exposure of ecological receptors. Alternative MS12B-03 is slightly more protective as it would prevent unacceptable exposure of ecological receptors immediately upon implementation rather than relying on natural recovery to gradually decrease COC concentrations over time. LUCs would be required under Alternative MS12B-02 until concentrations of COCs decrease to acceptable levels.

Compliance with ARARs. ARARs include any federal or state standards, requirements, criteria, or limitations determined to be legally applicable or relevant and appropriate to the site or remedial action. Alternatives MS12B-02 and MS12B-03 would meet the alternative-specific ARARs.

Primary Balancing Criteria – MS-12B

Long-Term Effectiveness and Permanence. Alternative MS12B-03 would provide greater long-term effectiveness and permanence than Alternative MS12B-02. Alternative MS12B-02 would depend on naturally occurring processes to reduce COC concentrations to acceptable levels prior to achieving long-term effectiveness and permanence. Alternative MS12B-02 would include monitoring to determine when cleanup levels are achieved. Alternative MS12B-03 would provide long-term effectiveness and permanence upon implementation by removing contaminated sediment, thus preventing ecological receptors from coming into contact with the contaminated sediment.

Reduction in Toxicity, Mobility, or Volume Through Treatment. Neither MS-12B alternative would involve an active process that would reduce the toxicity, mobility, or volume of COCs through treatment.

Short-Term Effectiveness. Alternative MS12B-02 would have minimal short-term effectiveness concerns. Implementation of LUCs and monitoring would not adversely impact the surrounding community or the environment. Alternative MS12B-03 would have some short-term effectiveness concerns for remediation construction workers and the environment related to removal and processing of contaminated material. However, these concerns could be effectively controlled using PPE, compliance with proper site-specific health and safety procedures, and use of BMPs to prevent exposure to and migration of contamination during construction and disposal activities.

Implementability. Alternative MS12B-02 would have relatively few implementation difficulties because this alternative would include only development of a LUC RD and monitoring plan to document the necessary LUCs and monitoring. Alternative MS12B-03 would be more difficult because this alternative would involve dredging, processing, and off-yard transportation and disposal of contaminated sediment. These activities would require additional access to the Shipyard and Shipyard offshore area, which would require coordination with Shipyard personnel for access to the facility and traffic control at the site. Alternative MS12B-03 would use more fuel energy and landfill space than Alternative MS12B-02. As a result, Alternative MS12B-02 would have a smaller remedial carbon footprint than Alternative MS12B-03.

Cost. The NPW costs for Alternatives MS12B-02 and MS12B-03 are \$309,149 and \$428,824, respectively.

Modifying Criteria – MS-12B

State Acceptance. State involvement has been solicited throughout the CERCLA process. MEDEP, as the designated support agency in Maine, concurs with the Selected Remedy for MS-12B.

Community Acceptance. No comments were received that changed the preferred remedial alternative for MS-12B.

2.11 PRINCIPAL THREAT WASTE

Principal threat wastes are those source materials considered to be highly toxic or highly mobile that generally cannot be reliably contained or that would present a significant risk to human health or the environment should exposure occur. A source material is a material that includes or contains hazardous substances, pollutants, or contaminants that act as a reservoir for migration of contamination to groundwater, surface water, or air, or acts as a source for direct exposure. The NCP at 40 CFR 300.430(a)(1)(iii)(A) establishes an expectation that treatment will be used to address the principal threats posed by a site wherever practicable. At OU4, contaminated sediment concentrations are not highly toxic or highly mobile; therefore, principal threat wastes are not present at the site.

2.12 SELECTED REMEDIES

2.12.1 Rationale for Selected Remedies

Onshore removal actions and remedial actions have been conducted to eliminate the sources of contamination to the offshore from onshore IR Program sites, and reduction in concentrations of COCs in sediment at the various monitoring stations have been observed over the course of the Interim Offshore Monitoring Program. However, residual concentrations of COCs in portions of MS-01, MS-03, MS-04, and MS-12 remain at levels that pose potentially unacceptable ecological risk. The Selected Remedies for these stations include removal of contaminated sediment to address the remaining risk.

MS-01

The Selected Remedy for MS-01 is Alternative MS01-03 (Dredging with Off-Yard Disposal), which was selected because it provides the best balance of tradeoffs with respect to the nine evaluation criteria. Alternative MS01-03 was selected over the other alternatives because it provides the greatest long-term

effectiveness and will be protective of human health and the environment. Alternative MS01-03 will remove contaminated sediment to reduce concentrations of PAHs to cleanup levels, rather than relying on natural recovery to gradually decrease COC concentrations, as provided under Alternative MS01-02. Alternative MS01-03 is less implementable than Alternative MS01-02 and also has a greater cost, but the Selected Remedy is still readily implementable, and the additional costs are warranted because of the significantly greater protection provided in the long term.

The principal factors in the selection of this remedy for MS-01 were as follows:

- Removal of contaminated sediment will address potential unacceptable risks to benthic invertebrates without significant disturbance of the site or industrial site use and will allow unlimited use and unrestricted exposure.
- Removal of contamination to meet the RAO and cleanup levels will be conducted such that LUCs, O&M, monitoring, inspections, and five-year reviews are not required.
- The remedy provides greater confidence in achievement of the RAO in a shorter time and at an acceptably greater cost than Alternative MS01-02 (\$917,661 compared with \$311,538).

MS-03 and MS-04

The Selected Remedy for MS-03 and MS-04 is Alternative MS0304-03 (Dredging with Off-Yard Disposal), which was selected because it provides the best balance of tradeoffs with respect to the nine evaluation criteria. Alternative MS0304-03 was selected over the other alternatives because it provides the greatest long-term effectiveness and will be protective of human health and the environment. Alternative MS0304-03 will remove contaminated sediment to reduce concentrations of copper at MS-03 and copper and PAHs at MS-04 to cleanup levels, rather than relying on natural recovery to gradually decrease COC concentrations, as provided under Alternative MS0304-02. Alternative MS0304-03 is less implementable than Alternative MS0304-02 and also has a greater cost, but the Selected Remedy is still readily implementable, and the additional costs are warranted because of the significantly greater protection provided in the long term.

The principal factors in the selection of this remedy for MS-03 and MS-04 were as follows:

- Removal of contaminated sediment will address potential unacceptable risks to benthic invertebrates without significant disturbance of the site or industrial site use and will allow unlimited use and unrestricted exposure.
- Removal of contamination to meet the RAO and cleanup levels will be conducted such that LUCs, O&M, monitoring, inspections, and five-year reviews are not required.
- The remedy provides greater confidence in achievement of the RAO in a shorter time and at an acceptably greater cost than Alternative MS0304-02 (\$745,410 compared with \$323,481).

MS-12A and MS-12B

The Selected Remedies for MS-12A and MS-12B are MS12A-04 (Complete Removal with Off-yard Disposal) and MS12B-03 (Dredging with Off-Yard Disposal), respectively, which were selected because they provides the best balance of tradeoffs with respect to the nine evaluation criteria.

For MS-12A, Alternative MS12A-04 was selected over the other alternatives because it provides the greatest long-term effectiveness and will be protective of human health and the environment. Alternative MS12A-04 will remove contaminated sediment to reduce concentrations of lead and PAHs to cleanup levels, rather than relying on natural recovery to gradually decrease COC concentrations, as provided under Alternative MS12A-02. Contaminated sediment from the intertidal area inside Building 178 was already removed; therefore, placement and long-term O&M of a containment barrier, as provided under Alternatives MS12A-02 and MS12A-03 are no longer necessary. Alternative MS12A-04 is less implementable than Alternatives MS12A-02 and MS12A-03 and requires greater sediment removal,

transport, and disposal than Alternative MS12A-03, but the Selected Remedy is still readily implementable. The additional cost of Alternative MS12A-04 compared to Alternative MS12A-02 is warranted because of the significantly greater protection provided in the long term.

The principal factors in the selection of this remedy for MS-12A were as follows:

- Removal of contaminated sediment will address potential unacceptable risks to benthic invertebrates without significant disturbance of the site or industrial site use and will allow unlimited use and unrestricted exposure.
- Removal of contamination to meet the RAO and cleanup levels will be conducted such that LUCs, O&M, monitoring, inspections, and five-year reviews are not required.
- The remedy provides greater confidence in achievement of the RAO in a shorter time and at an acceptably greater cost than Alternative MS12A-02 (\$1,134,478 compared with \$675,807), and the remedy achieves greater long-term effectiveness at a lesser cost than Alternative MS12A-03 (\$1,134,478 compared with \$1,601,353).

For MS-12B, Alternative MS12B-03 was selected over the other alternatives because it provides the greatest long-term effectiveness and will be protective of human health and the environment. Alternative MS12B-03 will remove contaminated sediment to reduce concentrations of lead to cleanup levels, rather than relying on natural recovery to gradually decrease COC concentrations, as provided under Alternative MS12B-02. Alternative MS12B-03 is less implementable than Alternative MS12B-02 and also has a greater cost, but the Selected Remedy is still readily implementable, and the additional costs are warranted because of the significantly greater protection provided in the long term.

The principal factors in the selection of this remedy for MS-12B were as follows:

- Removal of contaminated sediment will address potential unacceptable risks to benthic invertebrates without significant disturbance of the site or industrial site use and will allow unlimited use and unrestricted exposure.
- Removal of contamination to meet the RAO and cleanup levels will be conducted such that LUCs, O&M, monitoring, inspections, and five-year reviews are not required.
- The remedy provides greater confidence in achievement of the RAO in a shorter time and at an acceptable greater cost than Alternative MS12B-02 (\$428,824 compared with \$309,149).

MS-02. MS-05. MS-06. MS-07. MS-08. MS-09. MS-10. MS-11. MS-13. and MS-14

No further action is the Selected Remedy because there are no unacceptable risks for these monitoring stations.

2.12.2 Description of Selected Remedies

The Selected Remedies for MS-01, MS-03, MS-04, and MS-12 (A and B) include three major components: (1) dredging of contaminated sediment, (2) dewatering of dredged sediment, and (3) transportation and disposal of dewatered and characterized sediment at an approved TSD facility. The remedial action documents will specify the requirements for dredging, dewatering, and disposal. Sampling will be conducted to make sure that contaminated sediment is removed such that the RAO and cleanup levels are met, and the remedial action documents will specify the requirements for sampling.

Contaminated sediment located offshore of PNS within the approximate areas shown on Figures 2-3 (MS-01), 2-4 (MS-03/MS-04), 2-5 (MS-12A), and 2-6 (MS-12B) will be removed to the specified depths to reduce concentrations of COCs to cleanup levels to meet the RAO. The estimated volume of in-place sediment requiring removal is approximately 1,800 cubic yards (cy) at MS-01, 1,300 cy at MS-03/MS-04, 600 cy at MS-12A, and 340 cy at MS-12B. The eelgrass bed on the ramp outside of Building 178 (see

Figure 2-5) is not within the removal limits because COC concentrations in sediment samples from the eelgrass bed are acceptable. Sediment removal will be conducted by dredging (e.g., mechanical or hydraulic). The dredging areas are located in a dynamic environment where sediment suspension and transport are the primary concern. BMPs will be implemented to prevent migration of resuspended sediment. Sediment suspension is addressed through selection of a dredging technology suited and operated to address environmental applications. Sediment transport will be minimized during remedial action through use of engineering controls (turbidity curtains). Sampling will be conducted to ensure the effectiveness of the sediment migration controls and that cleanup levels are met.

Dredged sediment will be dewatered and stabilized if needed using an additive to adsorb retained fluid. The dredged sediment will be characterized before transportation off yard for disposal at an approved TSD facility. The remedial action documents will specify the specific dredging technology, BMPs, sampling requirements, and dewatering and characterization activities for sediment removal and disposal. The removal of sediment contamination will be conducted such that LUCs, O&M, monitoring, inspections, and five-year reviews are not required.

Further action is not required to protect human health and the environment at MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14.

Excavation of contaminated sediment to meet cleanup levels at MS-01, MS-03, MS-04, and MS-12 (A and B), and No Further Action for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14 will result in no further risks associated with Site 5 and the OU4 AOCs. The monitoring stations and remedies associated with Site 5 and the AOCs area as follows.

AOC/Site	Monitoring Station	Remedy
Dry Dock/Site 5	MS-12 (A and B)	Sediment Removal
	MS-13, MS-14	No Further Action
Back Channel	MS-01	Sediment Removal
	MS-02	No Further Action
	MS-03, MS-04	Sediment Removal
Jamaica Cove	MS-05, MS-06	No Further Action
Clark Cove	MS-07, MS-08, MS-09	No Further Action
Sullivan Point	MS-10	No Further Action
DRMO Storage Yard	MS-11	No Further Action

Upon implementation of the final remedies for OU4, interim offshore monitoring will be discontinued.

38 August 2013

2.12.3 Expected Outcomes of Selected Remedies

The current and reasonably anticipated future plan is to continue to use the offshore areas of PNS for industrial purposes to support Shipyard mission activities. Under current conditions, exposure to sediment at OU4 is possible for various human and ecological receptors, but the risk to human receptors is acceptable. Current and reasonably anticipated future potential exposure pathways are expected to remain consistent with present exposure pathways. The sediment removal portions of the Selected Remedies for each monitoring station eliminate potentially unacceptable risks to benthic invertebrates.

It is estimated that the RAO for OU4 will be achieved immediately upon completion of the Selected Remedies, assuming that the remedial actions occur during a single mobilization at these areas. Including preparation of the required remedial action documents and implementation of the remedies, the RAO is expected to be achieved within approximately 15 months from initiation of the design and planning phase. Table 2-14 describes how the Selected Remedies mitigate unacceptable risk and achieve the RAO.

Excavation of contaminated sediment to meet cleanup levels at MS-01, MS-03, MS-04, and MS-12 (A and B), and No Further Action for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14 will result in no further risks associated with Site 5 and the OU4 AOCs, allowing unlimited use and unrestricted exposure across the entire OU4 area.

TABLE 2-14. Ho ACHIEVE THE RAG		MS-03, MS-04, AND MS-12 MITIGATE RISK AND
RISK	RAO	COMMENTS
Potential unacceptable risks to benthic invertebrates from exposure to contaminated sediment.	Eliminate unacceptable risk to ecological benthic receptors exposed to site-related COCs in suitable sediment habitats.	Dredging of contaminated sediment within the specified remedial areas at MS-01, MS-03, MS-04, and MS-12 (A and B) and off-yard disposal will reduce risk to acceptable levels for benthic invertebrates.

2.13 STATUTORY DETERMINATIONS

In accordance with the NCP, the Selected Remedies meet the following statutory determinations:

- ➤ Protection of Human Health and the Environment The Selected Remedies for MS-01, MS-03, MS-04, and MS-12 are needed to prevent unacceptable risks to benthic invertebrates. Dredging of contaminated sediment will prevent unacceptable ecological exposure to contamination in the MS-01, MS-03, MS-04, MS-12A, and MS-12B areas. Further action is not required for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14 to protect human health and the environment.
- ➤ Compliance with ARARs The Selected Remedies for OU4 will attain the identified federal and state ARARs, as presented in Appendix E.
- ➤ Cost-Effectiveness The Selected Remedies are the most cost-effective alternatives with the greatest protection of human health and the environment that are expected to cause the least disruption of current facility operations. The costs are proportional to overall effectiveness by achieving an adequate amount of long-term effectiveness and permanence within a reasonable time frame. Detailed cost estimates for the Selected Remedies are presented in Appendix F.
- ➤ Utilization of Permanent Solutions and Alternative Treatment Technologies or Resource Recovery Technologies to the Maximum Extent Practicable The Selected Remedies represent the maximum extent to which permanent solutions and alternative treatment technologies can be

used in a practical manner at OU4. Based on the heterogeneous mixture of organic and inorganic COCs (PAHs, copper, and lead) and their distributions across the site, the Navy concluded that it was impracticable to treat the COCs in a cost-effective manner. Sediment removal provides the best balance of tradeoffs for long-term effectiveness and permanence with ease of implementation for reasonable cost.

- ➤ Preference for Treatment as a Principal Element Treatment is not a principal element of the Selected Remedies at OU4 because there are no principal threat wastes at the site.
- Five-Year Review Requirement Five-year site reviews are not required for OU4 because contamination will not remain in excess of levels that allow for unlimited use and unrestricted exposure.

2.14 DOCUMENTATION OF SIGNIFICANT CHANGES

CERCLA Section 117(b) requires that the ROD document and discuss the reasons for any significant changes made to the Selected Remedies presented in the Proposed Plan that was published for public comment. The Navy, in consultation with USEPA, determined that modifications to the Selected Remedies based on comments received during the public comment period were not required. Comments received during the public comment period are discussed in Section 3.0, Responsiveness Summary.

There were no significant changes made to the Selected Remedies from what was presented in the Proposed Plan (provided in Appendix B). However, based on completion of sediment removal to support the renovation project for Building 178, the area of sediment contamination shown for MS-12A in Figure 2-5 does not include the portion where sediment was removed. Appendix G provides additional information on the sediment removal as part of the renovation project.

3.0 RESPONSIVENESS SUMMARY

3.1 STAKEHOLDER COMMENTS AND LEAD AGENCY RESPONSES

Based on the results of the public comment period, no changes to the remedy, as originally identified in the Proposed Plan, were necessary or appropriate. Participants in the public meeting held March 13, 2013, included two RAB members, the Technical Assistance Grant consultant for a community organization, and representatives of the Navy, USEPA, and MEDEP. One of the RAB members is a representative of the community organization that provided oral and written comments during the public comment period. Comments received during the public comment period are included in Appendix C. The community organization indicated general support for the preferred alternatives for OU4. One comment was specifically related to the preferred alternatives and is summarized in Table 3-1. Other comments and questions were in regard to consideration of factors that relate to future conditions at PNS and potential risks from migration of contamination from other OUs to the offshore area, which are being addressed as part of other OUs. The Navy responses to these comments and questions are provided in Appendix C.

TABLE 3-1. SUMMARY OF COMMENT ON PROPOSED REMEDIES FROM PUBLIC HEARING AND PUBLIC COMMENT PERIOD			
COMMENT	RESPONSE		
The community organization indicated that confirmation sampling was necessary to demonstrate that contamination has been removed at the four monitoring stations.	Sampling is included as discussed in the description of the preferred alternatives on page 16 of the Proposed Plan. The Navy will conduct sampling to make sure that contaminated sediment is removed such that the RAO and cleanup levels are met. The appropriate remedial action documents will specify the requirements for sampling at the four monitoring stations.		

3.2 TECHNICAL AND LEGAL ISSUES

No technical or legal issues associated with the OU4 ROD were identified.

Portsmouth Naval Shipyard	Record of Decision for Operable Unit 4
Administrative Rec	ord Reference Table

DETAILED ADMINISTRATIVE RECORD REFERENCE TABLE

	REFERENCE PHRASE	Location	LOCATIO	ON OF INFORMATION IN ADMINISTRATIVE RECORD (N00102)
ITEM	IN ROD IN ROD		RECORD NUMBER	DOCUMENT TITLE
1	IAS	Table 2-1	000002	Initial Assessment Study of Portsmouth Naval Shipyard, Weston, June 1983
			000012 and 000013	Final Confirmation Study Report on Hazardous Waste Sites at Naval Shipyard Portsmouth, Loureiro Engineering Associates, June 1986
2	RCRA RFI	Table 2-1	000117 to 000122	Draft Acting as Final, RCRA Facility Investigation Report, McLaren/Hart, July 1992
			000169	Addendum to RCRA Facility Investigation Report, McLaren/Hart, June 1993
3	HHRA and Phase I/Phase II Offshore Data Comparison	Table 2-1	000229	Final Human Health Risk Assessment Report for Off-shore Media, McLaren/Hart, May 1994
	Data Companson		000606	Phase I/Phase II Offshore Data Comparative Analysis Report, Tetra Tech, October 1998
4	Interim ROD	Table 2-1	000676	Interim Record of Decision for Operable Unit 4, Navy, May 1999
5	EERA	Table 2-1	000838	Final Estuarine Ecological Risk Assessment, Naval Command, Control, and Ocean Surveillance Center, May 2000
6	Site 26 NFA	Table 2-1	001019	Decision Document for Site 26, Navy August 2001
7	Interim Offshore Monitoring for OU4	Table 2-1	002749	Feasibility Study Report for Operable Unit 4, Tetra Tech, September 2012
			000750	Interim Offshore Monitoring Plan for Operable Unit 4, Tetra Tech, October 1999
			001062	Preliminary Remediation Goals for Operable Unit 4, Tetra Tech, November 2001
			001150	Baseline Interim Offshore Monitoring Report for Operable Unit 4, Tetra Tech, July 2002
			001416 and 001417	Rounds 1 through 7 Interim Offshore Monitoring Program Report, Tetra Tech November 2004

DETAILED ADMINISTRATIVE RECORD REFERENCE TABLE

Ivea	REFERENCE PHRASE	Location	Location of Information in Administrative Recor (N00102)		
ITEM	IN ROD	IN ROD	RECORD NUMBER	DOCUMENT TITLE	
	Interim Offshore Monitoring for OU4 (continued)		001484	Additional Scrutiny Quality Assurance Project Plan for Operable Unit 4, Tetra Tech, August 2005	
			001612	Additional Scrutiny Report for Operable Unit 4, Tetra Tech, August 2007	
			001619	Phase II Additional Scrutiny Quality Assurance Project Plan, Tetra Tech, September 2007	
			001682	Draft Acting as Final Technical Memorandum Recommendation for Modifications to the Interim Offshore Monitoring Program, Tetra Tech, September 2008	
			001716	Rounds 1 through 10 Interim Offshore Monitoring Program Report for Operable Unit 4, Tetra Tech, February 2010	
			002514	Interim Offshore Monitoring Plan for Operable Unit 4, Revision 1, Tetra Tech, November 2010	
			002697	Second Five-Year Review Report for PNS, Tetra Tech, May 2012	
8	FS and cleanup alternatives	Table 2-1	002749	Feasibility Study Report for Operable Unit 4, Tetra Tech, September 2012	
9	Site Characteristics	Section 2.5	002749	Feasibility Study Report for Operable Unit 4, Tetra Tech, September 2012	
			002697	Second Five-Year Review Report for PNS, Tetra Tech, May 2012	
10	Human health risk	Table 2-1 and	002749	Feasibility Study Report for Operable Unit 4, Tetra Tech, September 2012	
		Section 2.7.1	000229	Final Human Health Risk Assessment Report for Offshore Media, McLaren/Hart, May 1994)	
			000606	Phase I/Phase II Offshore Data Comparative Analysis Report, Tetra Tech, October 1998)	
			002465	Final Public Health Assessment NSY Portsmouth, Agency for Toxic Substances and Disease Registry, November 2007	

DETAILED ADMINISTRATIVE RECORD REFERENCE TABLE

İTEM	REFERENCE PHRASE	LOCATION	LOCATION OF INFORMATION IN ADMINISTRATIVE RECORD (N00102)		
HEM	IN ROD	IN ROD	RECORD NUMBER	DOCUMENT TITLE	
11	Ecological risk	Section 2.7.2	002749	Feasibility Study Report for Operable Unit 4, Tetra Tech, September 2012	
			000838	Final Estuarine Ecological Risk Assessment, Naval Command, Control, and Ocean Surveillance Center, May 2000	
12	Remedial action objectives and	Section 2.8	002749	Feasibility Study Report for Operable Unit 4, Tetra Tech, September 2012	
	cleanup levels		001062	Preliminary Remediation Goals for Operable Unit 4, Tetra Tech, November 2001	
14	Preliminary technology/screening	Section 2.9	002749	Feasibility Study Report for Operable Unit 4, Tetra Tech, September 2012	
15	Remedial alternatives	Section 2.9	002749	Feasibility Study Report for Operable Unit 4, Tetra Tech, September 2012	
16	Nine CERCLA evaluation criteria	Section 2.10	002749	Feasibility Study Report for Operable Unit 4, Tetra Tech, September 2012	
17	Chemical-, location-, and action-specific ARARs	Section 2.10	002749	Feasibility Study Report for Operable Unit 4, Tetra Tech, September 2012	
18	Public meeting	Section 3.1	Not Applicable	The public meeting for the Proposed Plan for OU4 was held on March 13, 2013. Transcripts are provided in Appendix C.	

Appendix A State of Maine Concurrence Letter

STATE OF MAINE DEPARTMENT OF ENVIRONMENTAL PROTECTION

PAUL R. LEPAGE GOVERNOR PATRICIA W. AHO
ACTING COMMISSIONER

August 5, 2013

James T. Owens, I11
Director, Office of Site Remediation & Restoration EPA New England, Region I
5 Post Office Sq. Suite 100
Mail Code OSRR07-5
Boston, MA 02109-3912

Re: Record of Decision for Operable Unit 4 Portsmouth Naval Shipyard, Kittery, Maine

Dear Mr. Owens:

The Maine Department of Environmental Protection (MEDEP) has reviewed the Record of Decision — Operable Unit 4 — Site 5 and Offshore Areas Potentially Impacted by PNS Onshore IRP Sites, Portsmouth Naval Shipyard, Kittery, Maine dated August 2013. The Record of Decision (ROD) summarizes the results from the Human Health Risk Assessment, Estuarine Ecological Risk Assessment, Interim Offshore Monitoring and the Feasibility Study and documents Navy's rationale for selecting removal of contaminated sediment and disposal of the sediments off-yard for MS-01, MS-03, MS-04, MS-12, and no further action for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14. MEDEP concurs with the selected decision for contaminated sediments of sediment removal and disposal off-site and no further action for sediments without contaminants exceeding cleanup levels.

The State's concurrence of the selected decision, as described above, should not be construed as the State's concurrence with any conclusion of law or finding of fact, which may be set forth in the ROD or supporting documents for the site listed above. The State reserves any and all rights to challenge any such finding of fact or conclusion of law in any other context.

This concurrence is based on the State's understanding that the Navy will continue to solicit MEDEP's review and concurrence with the Remedial Design, Remedial Action oversight, and Remedial Action report for OU4.

MEDEP looks forward to working with the Department of the Navy and Environmental Protection Agency to resolve the environmental issues remaining at the Portsmouth Naval Shipyard. If you have any questions or comments, please contact Iver McLeod at iver.j.mcleod@maine.gov or 207-287-8010.

Best regards,

Patricia W. Aho Commissioner

pc: Iver McLeod - MEDEP

Elizabeth Middleton - US Navy

Matt Audet - USEPA

Appendix B Proposed Plan for Operable Unit 4

Proposed Plan

Operable Unit 4 Portsmouth Naval Shipyard, Kittery, Maine

THE CLEANUP PROPOSAL

This Proposed Plan has been prepared, in accordance with federal law and the Federal Facility Agreement for Portsmouth Naval Shipyard (PNS), to present the Navy's preferred approach for addressing contaminated sediment at Operable Unit (OU) 4, PNS, Kittery, Maine. OU4 includes Site 5 — the Former Industrial Waste Outfalls and six areas of concern (AOCs). Past contamination from Site 5 is addressed as part of the Dry Dock AOC. Monitoring stations (labeled MS-01 to MS-14) provide coverage of the offshore AOCs and the remedial alternatives for OU4 were evaluated for the monitoring stations or for groups of nearby monitoring stations.

After careful study, the Navy, with concurrence from the United States Environmental Protection Agency (EPA), proposes to remove contaminated sediment and dispose of the sediments off-yard for MS-01, MS-03, MS-04, MS-12, and proposes no further action for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14. With the implementation of final remedies at OU4, interim offshore monitoring will be discontinued.

This plan provides information on the remedial alternatives evaluated for impacted sediment, the public comment period, the public informational open house and public hearing, and how the final remedy for OU4 will ultimately be selected.

LET US KNOW WHAT YOU THINK

Mark Your Calendar!

PUBLIC COMMENT PERIODFEBRUARY 27, 2013 TO MARCH 28, 2013

The Navy will accept comments on this Proposed Plan for OU4 during this comment period. You do not have to be a technical expert to comment. To provide formal comments, you may offer oral comments during the public hearing or provide written comments at the informational open house, at the public hearing, or by fax or mail. Send written comments postmarked no later than March 28, 2013, to:

Ms. Danna Eddy, Public Affairs Office (Code 100PAO),
Portsmouth Naval Shipyard,
Portsmouth, New Hampshire 03804-5000

Fax: (207) 438-1266

INFORMATIONAL OPEN HOUSE AND PUBLIC HEARING March 13, 2013

The Navy invites you to attend an informational open house from 7:45 pm to 8:15 pm to learn more about the proposed OU4 cleanup plan and how it compares with other cleanup options for the site. The informational session will include posters describing the Proposed Plan, and an informal question and answer session. A formal public hearing will follow from 8:15 to 8:45 pm, in which the Navy will receive comments on the Proposed Plan from the public. It is at this formal hearing that an official transcript of the comments will be recorded. The above activities will be held at the *Kittery Town Hall in Kittery, Maine*.

Federal and state environmental laws govern cleanup activities at federal facilities. A federal law called the **Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)**, better known as Superfund, provides procedures for investigation and cleanup of environmental problems. Under this law, the Navy is pursuing cleanup of designated sites at PNS to return the property to a condition that protects the community, workers, and the environment.

INTRODUCTION

This Proposed Plan provides information on the preferred approaches for addressing contaminated sediment at OU4 and provides the rationale for this preference. In addition, this plan includes summaries of other cleanup alternatives evaluated for use at OU4. This document is issued by the Navy, as the lead agency for all investigation and cleanup programs ongoing at PNS, and EPA, with the concurrence of the Maine Department of Environmental Protection (MEDEP). The Navy and EPA, in consultation with MEDEP, will select the final remedies for OU4 after reviewing and considering all information submitted during the 30-day public comment period and may modify the preferred alternatives or select another response action presented in this plan based on new information or public comments. Therefore, the public is encouraged to review and comment on all of the alternatives presented in this Proposed Plan.

The Navy is issuing this Proposed Plan as part of its public participation responsibilities under Section 300.430(f)(2) of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). The Proposed Plan summarizes information that can be found in greater detail in the Rounds 1 through 10 Interim Offshore Monitoring Program Report, the Feasibility Study (FS) Report for OU4, and other documents included in the PNS Information Repositories, located at the Rice Public Library in Kittery, Maine, and the Portsmouth Public Library in Portsmouth, New Hampshire. Documents are also available on the Navy's public website for PNS. The Navy and EPA encourage the public to review these documents to gain a more comprehensive understanding of the site and associated environmental activities. Please refer to the Next Steps section on Page 19 for location and contact information for these facilities.

The purposes of this Proposed Plan are to:

- Provide the public with basic background information about PNS and OU4. This information includes a description of the operable unit that was developed by reviewing past documents, investigating offshore media (surface water, sediment, and biota), and evaluating potential human and ecological impacts.
- Describe the cleanup options that were considered.
- Identify the Navy's preferred alternatives for remedial action at OU4 and explain the reasons for that preference.
- Provide the public information on how the public can be involved in the remedy selection process.
- Solicit and encourage public review of the Proposed Plan.

History of Site Investigations and Interim Actions

1983 through 1986 – Initial Assessment Study (IAS): Assessed and identified potential threats posed by the sites to human health and the environment. The final stage of this investigation was completed in 1986 with the release of the Final Confirmation Study (FCS). The FCS was conducted to evaluate the sites specified in the IAS to confirm the presence of contamination.

1989 through 1995 – Resource Conservation and Recovery Act (RCRA) Facilities Investigation (RFI): Consisted of several stages from October 1989 to February 1992 with the results compiled into the RFI Report. EPA issued the RFI "Approval with Conditions" in March of 1993, and the Addendum to the RFI Report was assembled to address the "Approval with Conditions." The RFI Data Gap Report, compiled in 1995, is supplemental to the RFI Report and presents the results of the field work.

1994 - The Human Health Risk Assessment (HHRA) and 1998 Phase I/Phase II Offshore Data Comparison: Potential exposure points and routes identified for human health included dermal contact with and ingestion of surface water and sediment, and ingestion of biota (lobster, mussels, and flounder) for the PNS offshore area. The results were used to evaluate human health risks for the offshore area.

1999 — Interim Record of Decision (ROD) for OU4: Required the Navy to conduct monitoring for the offshore area of PNS in the interim period before the FS is completed for the offshore area, and until the final remedy for OU4 is implemented.

2000 – Estuarine Ecological Risk Assessment (EERA): Sediment, surface water, and tissue samples were collected from the offshore area for various analyses/studies. The results of the analyses/studies were used to evaluate ecological risks for the offshore area.

2001 – Preliminary Remediation Goals (PRGs) for OU4: Identified risk-based chemical concentrations in sediment that are protective of sediment invertebrates.

1999 through 2011 – Interim Offshore Monitoring for OU4: A monitoring plan was developed and 11 rounds of sampling plus two additional scrutiny investigations were conducted from September 1999 through April 2011. The data from Rounds 1 through 4 were evaluated in the Baseline Report in 2002, and data from Rounds 1 through 7 were evaluated in the Rounds 1 through 7 Report in 2004. The data from the Phase I Additional Scrutiny Investigation were evaluated in the 2007 Additional Scrutiny Report. Data from Rounds 1 through 10 and the Phase II Additional Scrutiny Investigation were compiled and evaluated in the Rounds 1 through 10 Interim Monitoring Program Report in 2010. Data from Round 11 were evaluated in the Second Five-Year Review Report.

2012 – Feasibility Study (FS): Conducted to develop and evaluate potential cleanup alternatives for OU4.

After the public has had the opportunity to review and comment on this Proposed Plan, the Navy will summarize and respond to all significant comments received during the comment period in a Responsiveness Summary. The Navy and EPA, in consultation with MEDEP, will carefully consider all comments received and could even select remedies different from that proposed in this plan after appropriate additional opportunity for comment. Ultimately, the selected remedies for OU4 will be documented in a **Record of Decision (ROD)** for the site. The Responsiveness Summary will be issued with the ROD.

SITE BACKGROUND

PNS is a military facility with restricted access located on an island in the Piscataqua River. The Piscataqua River is a tidal estuary that forms the southern boundary between Maine and New Hampshire. PNS was established as a government facility in 1800, and served as a repair and building facility for ships during the Civil War. The first government-built submarine was designed and constructed at PNS during World War I. A large number of submarines have been designed, constructed, and repaired at this facility since 1917. PNS continues to service submarines as its primary military focus. Figure 1 shows the location of PNS, and Figure 2 shows the layout of PNS and OU4.

Where is OU4 within the Shipyard?

OU4 is the offshore area of the Piscataqua River and Back Channel around PNS potentially impacted by onshore IRP sites and Site 5 (former industrial waste outfalls). OU4 is a compilation of Site 5 and six AOCs. The AOCs are nearshore habitats adjacent to PNS that may have been affected by onshore Installation Restoration Program (IRP) sites. The six AOCs are: Clark Cove, Sullivan Point, Defense Reutilization and Marketing Office (DRMO) Storage Yard, Dry Docks, Back Channel, and Jamaica Cove. The AOC locations are shown on Figure 2. The conceptual site model of OU4 is shown on Figure 3.

Two IRP sites were considered sites that had offshore impacts but no onshore impacts: Site 5, Former Industrial Waste Outfalls; and Site 26, Portable Oil/Water Tanks. A No Further Action document was signed for Site 26; therefore, it is no longer included in OU4. Site 5 consisted of numerous discharge points along the Piscataqua River at the western end of PNS in the Dry Docks AOC. Use of these outfalls was discontinued in 1975. Past contamination from Site 5 is being addressed by the monitoring stations within the Dry Dock AOC.

As part of the Interim Offshore Monitoring Program, 14 monitoring stations were identified to provide coverage of the offshore AOCs for interim monitoring purposes. Four reference stations located in the Piscataqua River were also sampled to provide information about non-PNS impacted areas.

MS-01, MS-02, MS-03, and MS-04 are located in the Back Channel AOC. MS-01 is located in the western portion of the

AOC, offshore of Site 34 (OU9) and adjacent to the bridge leading to Gate No. 1. Past disposal of ash at Site 34 is the likely source of elevated **polycyclic aromatic hydrocarbons** (PAHs) at OU9. Removal of the ash as part of the 2007 Site 34 removal action eliminated the IRP source of contamination at this station.

MS-02 is located between Topeka Pier and the bridge from Gate No. 2. There are no known IRP sites immediately onshore of MS-02. MS-03 and MS-04 are located in the eastern portion of the AOC, offshore of Site 32 (OU7). Foundry slag associated with fill material at Site 32 has been identified in the intertidal areas of MS-03 and MS-04, and is likely the source of elevated **metal** and PAH concentrations at those stations. Removal of surficial debris in the intertidal area and placement of shoreline erosion controls as part of the 2006 Site 32 removal action eliminated the IRP source of contamination to these monitoring stations.

MS-05 and MS-06 are located in the offshore area of OU3 in Jamaica Cove, and are adjacent to the wetland constructed as part of the remedy for OU3. As part of the remedy for OU3, contaminated soil adjacent to Jamaica Cove was excavated, and wetlands were constructed in the excavated area. Although there is no longer contaminated soil adjacent to Jamaica Cove, the excavation of contaminated soil resulted in the release of contaminants to sediment offshore of Jamaica Cove.

MS-07, MS-08, and MS-09 are all located in the Clark Cove AOC. MS-07 is located in a recreational area of the AOC, but is not immediately offshore of OU3. There are no known IRP sites immediately onshore of MS-07. MS-08 and MS-09 are located immediately offshore of OU3 in the AOC. The intertidal area near MS-08 was excavated as part of the OU3 remedial activities in 2004, and the excavated area was backfilled with clean material. As part of OU3 remedial activities, shoreline erosion controls were installed in the small intertidal areas that existed at MS-09 and the area was covered with riprap; therefore, there is no longer an intertidal area associated with MS-09.

MS-10 is located at the southeastern corner of PNS, within the Sullivan Point AOC. It is the only monitoring station in this area, and no previous activity is suspected to have led to contamination. There are no known IRP sites immediately onshore of MS-10.

MS-11 is located within the DRMO Storage Yard AOC. MS-11 is located in the main channel of the Piscataqua River, just offshore of OU2 (Sites 6 and 29). Past DRMO and waste disposal activities

led to soil contamination at OU2. Physical movement of contaminated soil, such as snow plowing and erosion of contaminated soil, have resulted in contamination of the offshore area adjacent to OU2 in the past. Current erosion of contaminated soil is not occurring because of controls placed along the shoreline (in 1999 along Site 6 and in 2005, 2006, and 2008 along Site 29).

MS-12, MS-13, and MS-14, are located in the western section of PNS in the Dry Docks AOC. MS-12 is located adjacent to Building 178 and offshore of Sites 5 and 10. One likely source of contamination in the area is a former industrial waste outfall (Site 5) that reportedly discharged material during previous operations. There are no current IRP sources to MS-12. Other potential Navy sources of contamination exist at MS-12, including potential migration or transport from IRP sites or various boat, barge, and dock-side activities. MS-13 is located outside of a dry dock offshore of Sites 5 and 31. MS-14 is located in the westernmost part of the back channel to monitor sediment potentially impacted by Sites 5 and 31.

Figure 2 - Overview of Interim Offshore Monitoring Station Locations

TECHNICAL TERMS USED THROUGHOUT THIS PROPOSED PLAN ARE EXPLAINED IN THE GLOSSARY OF TERMS ON PAGE 20

Figure 3 - Conceptual Site Model

R: \2225 - Portsmouth Naval Shipyard\Civil\2225C0007.dwg PIT NICHOLE.NAJESKI 2/11/2013 9: 33: 39 AM

For what was OU4 used?

The Shipyard uses the offshore area for boat docks and piers as well as for vessel transport as part of Shipyard operations. The Piscataqua River and Back Channel near PNS are also used for non-Navy activities including commercial and recreational boat traffic and discharge from municipal and industrial operations or treatment plants.

What is the current and future land use at the site?

OU4 is the area offshore of PNS; therefore, its uses would be those that occur in the Piscataqua River. Current uses of the Piscataqua River include commercial and recreational activities such as boating, fishing, and lobstering. Future uses are expected to remain the same.

SITE CHARACTERISTICS

What does OU4 look like?

In OU4, the offshore area of PNS, there are boat docks, piers, and various habitats, including wetlands, mudflats, rocky bottoms, eelgrass, and salt marsh. The different habitats support a diverse group of floral and faunal species such as phytoplankton, algae, and eelgrass; along with invertebrates such as mussels and lobsters, birds such as gulls and herons, and mammals such as raccoons and mink, to name a few.

The channel bottom/subtidal habitat is the bottom of the pelagic area and consists of both hard-bottom areas and fine-grained depositional areas. The hard-bottom areas occur where the river experiences tidal scouring and active erosion, such as in those areas offshore of PNS in the main flow of the Piscataqua River. The fine-grained depositional areas occur outside the main flow of the Piscataqua River, along the Back Channel, Jamaica Cove, and Clark Cove.

What is the size of OU4?

OU4 comprises the area offshore of PNS, represented by the 14 monitoring stations. The combined area of the monitoring stations is approximately 19 acres.

How much and what types of chemicals are present?

The chemicals of concern (COCs) detected in sediment samples collected at OU4 are discussed in this section. The discussion focuses on the monitoring stations, because most sediment samples were collected at these stations as part of the Interim Offshore Monitoring Program or other offshore investigations, and the COCs vary across the monitoring stations. Based on the interim offshore monitoring program results, PAHs and metals are the COCs in the offshore sediment.

The monitoring program showed that concentrations of COCs at MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-13, and MS-14 were less than levels that indicate an ecological risk.

For MS-11, copper, lead, and nickel are the COCs that resulted from past erosion of soil from the OU2 shoreline. With the installation of shoreline erosion controls, erosion is no longer occurring along the OU2 shoreline. The offshore area of OU2 is rocky and there is a minimal amount of finegrained sediment at MS-11; therefore, there is not sufficient sediment to cause ecological risk. In the one location where a small amount of sediment was found, concentrations of copper, lead, and nickel exceeded ecological risk levels in two to six of the seven sampling rounds prior to installation of the shoreline erosion controls. Concentrations of the COCs were less than ecological risk levels in the one round of sampling at MS-11 conducted after placement of the shoreline erosion controls (Round 11).

At MS-01, PAHs are the primary COCs and likely resulted from past erosion of ash from past operations at nearby Building 62 at OU9. Assuming an average sediment thickness of 2 feet, the volume of contaminated sediment with COCs at concentrations that present a potential ecological risk is about 1,800 cubic yards (yd³).

For MS-03 and MS-04, the COCs are copper and PAHs, which are associated with past erosion of fill material located in the onshore area (OU7) adjacent to these monitoring stations. Assuming an average sediment thickness of 1 to 2 feet (depending on the area), the volume of contaminated sediment with COCs at concentrations that present a potential ecological risk is about 1,300 yd³.

At MS-12, the COCs are lead and PAHs. One likely source of these chemicals is a former industrial waste outfall (Site 5) that reportedly discharged metals (including lead) and PAHs during previous operations. The discharges were discontinued by 1975. Therefore, there are no current IRP sources to MS-12. Other potential Navy sources of the elevated levels of lead and PAHs at MS-12 include: potential migration or transport from IRP sites, discharges from barges/boats, discharges from storm water outfalls located in the vicinity of the Shipyard, and dock-side activities. Based on the distribution of COCs, MS-12 was divided into MS-12A and MS-12B. MS-12A is located adjacent to Building 178 and includes a portion of Building 178 where water enters the building in the former boat bays. At MS-12A, assuming an average sediment thickness of 1.5 feet outside of Building 178, the volume of contaminated sediment with lead and PAHs at concentrations that present ecological risks is about 1,585 yd³, while the volume of contaminated sediment inside Building 178 is about 150 yd³, assuming an average sediment thickness of 0.2 feet. MS-12B is located offshore of a Site 5 outfall and only has lead contamination. At MS-12B, assuming an average sediment thickness of 0.5 feet, the volume of contaminated sediment with lead concentrations that present an ecological risk is about 340 yd³.

There are several potential non-Navy contaminant sources to the Piscataqua River offshore of PNS, especially sources of metals and petroleum products, because this area has a large amount of industry and urbanization. For example, potential sources include local industries, urban non-point source runoff, municipal water treatment discharges, and fuel or oil terminals. Petroleum products (e.g., fuel oil, diesel fuel, tar, etc.) and the incomplete combustion products of fuels from deposition on impervious industrial areas outside the Shipyard facility can be sources of metals and PAHs and may migrate offshore via sheet flow or storm sewers. Also, boat traffic in the river is a potential source of PAHs to the offshore area.

Scope and Role of the OU4 Response Action

OU4 is one of several operable units at PNS identified for assessment and cleanup under CERCLA. Each of these operable units is undergoing the CERCLA cleanup process independently of each other. The Proposed Plan for OU4 is not expected to have an impact on the strategy or progress of cleanup for the other sites at PNS. As these other sites (OU7, OU8, and OU9) progress through the cleanup process, Proposed Plans will be issued for these sites. Proposed Plans have already been prepared and RODs have been signed for OU1, OU2, and OU3.

SUMMARY OF RISKS

As part of site investigation activities, the Navy completed human health and ecological risk assessments to evaluate current and future effects of chemicals detected at OU4 on human health and the environment. The results of these assessments are described below.

Human Health Risks

The **HHRA** evaluated potential exposure to contaminants in sediment and surface water across OU4. It did not evaluate risks individually at each AOC or monitoring station. The risk assessment was conducted in accordance with EPA guidance documents that were available at the time.

Based on the results of the HHRA, risks for ingestion of sediment, dermal contact with sediment, ingestion of surface water, and dermal contact with surface water were less than regulatory guidelines. Based on studies within the Piscataqua River, concentrations of chemicals in seafood causing potentially unacceptable risks around PNS were generally similar to or less than concentrations in background samples or in other coastal waters of Maine. Although the potential risks for ingestion of seafood around PNS exceeded regulatory guidelines, the Agency for Toxic Substances and Disease Registry (ATSDR) Public Health Assessment (PHA) for PNS concluded that adults and children consuming fish or shellfish, or wading in the surface water and sediment are not likely to experience adverse health effects from the levels of chemical in those media. For these reasons,

human health risks were found to be acceptable and human health was not considered in the FS. No monitoring station locations require remedial action based on human health risks.

To estimate the baseline risk for humans using the HHRA methodology, a four-step process was used.

Step 1 - Identify COPCs

COPCs are chemicals found at the site at concentrations greater than state and/or federal risk-based screening criteria and background levels. The COPCs were further evaluated in Steps 2 through 4 of the risk assessment.

Step 2 - Conduct an Exposure Assessment

In this step, ways that humans come into contact with sediment, surface water, and biota at OU4 are considered. Both current and reasonably foreseeable future exposure scenarios were identified. Human receptors evaluated at OU4 included recreational and subsistence fishermen exposed to chemicals in the surface water, sediment, and biota.

Step 3 - Complete a Toxicity Assessment

In this step, possible harmful effects from exposure to the individual COPCs are evaluated. Generally, these chemicals are separated into two groups: carcinogens (chemicals that may cause cancer) and non-carcinogens (chemicals that may cause adverse effects other than cancer).

Step 4 - Characterize the Risk

The results of Steps 2 and 3 were combined to estimate the overall risk from exposure to chemicals at OU4.

Ecological Risks

The primary objective of the ecological risk assessment was to evaluate whether ecological receptors are potentially at risk when exposed to chemicals at OU4. The **EERA** began with problem formulation. Detailed ecological studies were then conducted to evaluate chemical exposure levels and assess ecological effects in the estuary. Finally, risk characterization was conducted by evaluating data and information from the ecological studies for evidence of ecological risk.

Step 1 – Problem Formulation

Within problem formulation, contaminants of ecological concern, assessment endpoints, and exposure pathways were identified. A conceptual model describing how contaminants from PNS could affect ecological resources in the estuary was also developed in this step. Assessment endpoints are the components of the ecosystem that are to be protected in the study area. They represent the environmental processes or conditions that can be assessed to determine if there are

ecological impacts present. Assessment endpoints were identified by defining the COPCs, ecological effects, and the ecosystems at risk.

To relate exposure levels to potential effects and to the assessment endpoints for the EERA, receptors of concern (species or communities of species that can be evaluated at the site) in the Great Bay Estuary were identified for each assessment endpoint. Receptors of concern were selected to meet one or more of the following criteria: the importance of the receptor to the ecology of the estuary, its sensitivity to COPCs associated with the Shipyard, and its aesthetic, recreational, and/or commercial importance as a natural resource of the estuary. The receptors of concern were considered to be surrogate or indicator receptors for larger groups of species.

Step 2 - Risk Analysis

In this step, possible harmful effects from being exposed to the individual COPCs were evaluated. Two types of information are required to characterize ecological risk, data on the chemical exposure in environmental media (surface water and sediment), and data that relate exposure levels (dose) to measurable ecological effects. Measurements of COPC concentrations in water, sediment, and tissues of estuarine organisms, and measurements of the health and status of ecological receptors were conducted in the AOCs and in reference areas to evaluate ecological risk. Exposure and effect data obtained for each AOC were used to evaluate the potential impact from the Shipyard relative to other areas in the lower estuary. The COCs were identified from the COPCs as the chemicals that had an indication of being at harmful levels in the estuary.

Step 3 - Risk Characterization

In this step, the results of the risk analysis were analyzed to determine the likelihood of harmful effects to ecological receptors at OU4. Based on the risk characterization, the general conclusions were that the contaminants from onshore PNS sites were released to the offshore area by erosion, runoff, and groundwater discharge. Some contaminants were also directly discharged to these offshore locations. The primary receptors of concern for this offshore contamination are benthic invertebrates.

A weight-of-evidence approach was then used to evaluate measures of effect and measures of exposure to interpret the level of risk evident for each applicable assessment endpoint and AOC. No single measure alone is capable of determining whether there is risk or not; therefore, multiple lines of evidence were developed to characterize the magnitude of risk. Overall, the EERA did not detect severe impacts. Although there were indications of intermediate risk from sediment exposure in some AOCs, the assessment showed that most of the estuarine habitats around the Shipyard were healthy and productive.

Estuarine Ecological Risk Assessment for PNS

The **EERA** was completed to provide an assessment of the potential adverse environmental effects from past discharges of contaminants from PNS to the offshore environments of the Piscataqua River and Great Bay Estuary. The EERA was conducted in two phases. Phase I was to assess the environmental quality in the Great Bay Estuary, focusing on the lower Piscataqua River area in relation to PNS. Phase II, focused on the environment directly offshore of PNS, characterizing the ecological risk at each AOC offshore of PNS.

The primary studies conducted during Phase I and Phase II included: chemical and/or physical analysis of sediment and surface water, various biological community and population assessments and toxicity tests, and chemical analysis of biological samples.

The collective data and studies were then used to assess potential risks to the estuarine environment in the vicinity of PNS. A weight-of-evidence approach (comparing the strengths and weaknesses of the various measurement methods of exposure and effect) was used to characterize risk for each component of the ecosystem that may be impacted by site contaminants (i.e., assessment endpoints) at each AOC. Risk determinations for each assessment endpoint at each AOC were made using the results of the weight-of-evidence assessment. All AOCs had either low or intermediate ecological risk overall. No assessment endpoints showed high ecological risks. The ecological risks for each assessment endpoint were linked back to surface water and/or sediment exposure for chemicals that may have originated from onshore IRP sites [i.e., chemicals of potential concern (COPCs)]. The COPCs were identified as those chemicals more likely to exceed benchmark concentrations than ambient concentrations were likely to exceed benchmark concentrations, and could also be linked to an onshore IRP site.

The EERA concluded that risks to the assessment endpoints from chemicals in surface water were negligible to low; therefore, the Interim Offshore Monitoring Program only included the collection of sediment and biota samples. Based on the Interim Offshore Monitoring Program, the following chemicals were identified as the sediment COCs for OU4: copper, lead, nickel, acenaphthylene, anthracene, fluorene, and high molecular weight (HMW) PAHs.

Why is action needed at the site?

As a result of previous activities at OU4, copper, lead, nickel, and PAH concentrations in sediment at several monitoring stations are greater than levels that could result in risks to benthic invertebrates.

It is the current judgment of the Navy and EPA, in consultation with MEDEP, that the preferred alternatives, or one of the other active measures identified in this Proposed Plan, are necessary to protect public health and welfare from actual or threatened releases of these hazardous substances into the environment based on potential ecological risks.

REMEDIAL ACTION OBJECTIVES

Remedial Action Objectives (RAOs) are the goals that a cleanup plan should achieve. They are established to protect human health and the environment, and comply with all pertinent federal and state regulations. The following RAO was developed for OU4 based on its current and reasonably anticipated future use:

Eliminate unacceptable risk to ecological benthic receptors exposed to site-related COCs in suitable sediment habitats.

OU4 cleanup levels were developed in the FS for the sediment COCs (copper, lead, nickel, and PAHs) and are based on site-specific sediment and pore water toxicity tests. The proposed **cleanup levels** are listed in Table 1 and are based on average exposure.

TABLE 1 – OU4 Proposed Cleanup Levels

COC	Proposed Cleanup Level			
Copper	486 parts per million (ppm)			
Lead	436 ppm			
Nickel	124 ppm			
Acenaphthylene	210 parts per billion (ppb)			
Anthracene	1,236 ppb			
Fluorene	500 ppb			
HMW PAHs	13,057 ppb			

SUMMARY OF REMEDIAL ALTERNATIVES

Remedial alternatives, or cleanup options, were identified in the OU4 FS to meet the RAO identified above. These alternatives are different combinations of plans to restrict access and to contain, remove, or treat contamination to protect the environment. As provided in the OU4 FS, no further action is required for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09,
10, MS-13, and MS-14, because there are no current exceedances of the proposed cleanup levels that indicate an ecological risk. MS-11 does not have sufficient sediment to cause ecological risk; therefore, no further action is required for MS-11.

Alternatives for MS-01, MS-03, MS-04, and MS-12 were analyzed separately. Note that although the FS assumed that hydraulic dredging would be used to remove sediment, other forms of sediment removal, such as mechanical dredging, may be utilized for sediment removal alternatives, as determined by remedial action documents, if sediment excavation is part of the final remedies.

MS-01 Alternatives

- ➤ MS01-01 No Action
- MS01-02 Monitored Natural Recovery
- MS01-03 Hydraulic Dredging with Off-yard Disposal

MS-03 and MS-04 Alternatives

- MS0304-01 No Action
- MS0304-02 Monitored Natural Recovery
- ➤ MS0304-03 Hydraulic Dredging with Off-yard Disposal

MS-12A Alternatives

- MS12A-01 No Action
- MS12A-02 Containment, Land Use Controls (LUCs), and Monitoring
- MS12A-03-Partial Removal, Off-yard Disposal, Containment, and LUCs
- ➤ MS12A-04 Complete Removal with Off-yard Disposal

MS-12B Alternatives

- ➤ MS12B-01 No Action
- MS12B-02 Monitored Natural Recovery
- ➤ MS12B-03 Hydraulic Dredging with Off-yard Disposal

No Action Alternatives: MS01-01, MS0304-01, MS12A-01 and MS12B-01

"No action" alternatives, where no cleanup remedies would be applied at the site, were evaluated for each of the cleanup areas at OU4. This is required under CERCLA, and it serves as a baseline for comparison with other alternatives. The monitoring stations would be left as they are today under the no action alternatives.

MS-01 Alternatives

Monitored Natural Recovery

Alternative MS01-02 would consist of allowing naturally occurring processes to reduce ecological risks posed by the sediment COCs over time. Based on the location of MS-01, the naturally occurring contamination reduction processes

are limited to biodegradation and dispersion. With the onshore removal of the ash as part of OU9 remediation, contaminants will no longer be deposited in the MS-01 offshore area as a result of erosion. Furthermore, because of the nature of the currents within the limits of MS-01, it is not expected that contaminated sediment from other locations would settle out in this area. Sediment samples would be collected and analyzed in accordance with a long-term monitoring plan to provide the data needed for determining when concentrations are reduced to acceptable levels. LUCs would be implemented at this location to prevent unauthorized disturbance of sediment until concentrations of COCs are less than cleanup levels. Five-Year Reviews would be required under this alternative to evaluate the continued adequacy of the remedy.

Hydraulic Dredging with Off-Yard Disposal

Alternative MS01-03 would consist of complete removal and offyard disposal of contaminated sediment from the offshore area of MS-01. High flow rates within the Piscataqua River may have shifted some of the sediments since the samples were collected; therefore, prior to removal, sampling would be conducted to verify the extent of contaminated sediment. Alternative MS01-03 would remove the contaminated sediment; therefore, LUCs, operation and maintenance (O&M), monitoring, inspections, and Five-Year Reviews would not be required. All dredged sediment would be dewatered, stockpiled, and characterized within the material handling area, then transported to an approved offyard treatment, storage and disposal (TSD) facility.

MS-03 and MS-04 Alternatives

Monitored Natural Recovery

Alternative MS0304-02 would consist of allowing naturally occurring processes to reduce ecological risks posed by the sediment COCs over time. Based on the locations of MS-03 and MS-04, the naturally occurring contamination reduction processes are limited to biodegradation and dispersion. Shoreline stabilization has been completed at the onshore areas associated with these monitoring stations; therefore, contaminants will no longer be deposited in the MS-03/MS-04 offshore areas as a result of erosion. Sediment samples would be collected and analyzed In accordance with a long-term monitoring plan to provide the data needed for determining when concentrations are reduced to acceptable levels. LUCs would be implemented to prevent unauthorized disturbance of sediment until concentrations of COCs are less than cleanup Five-Year Reviews would be required under this alternative to evaluate the continued adequacy of the remedy.

Hydraulic Dredging with Off-Yard Disposal

Alternative MS0304-03 would consist of complete removal and off-yard disposal of contaminated sediment from the offshore areas of MS-03 and MS-04. Prior to removal, sampling would be conducted to verify the extent of contamination. Alternative

MS0304-03 would remove the contaminated sediment; therefore, LUCs, O&M, monitoring, inspections, and Five-Year Reviews would not be required. All dredged sediment would be dewatered, stockpiled, and characterized within the material handling area, then transported to an approved off-vard TSD facility.

MS-12A Alternatives

Containment, LUCs and Monitoring

Alternative MS12A-02 would consist of constructing a containment barrier to prevent contaminated sediment within Building 178 from migrating into the Piscataqua River, thus removing the ongoing source of contamination to the offshore habitats. LUCs, O&M, and inspections would be implemented to ensure the containment barrier continues to function as designed. Sediment sampling locations would be established to evaluate the COC concentrations found in the sediment on the boat ramp outside Building 178. Over time, source removal and naturally occurring processes, such as sediment deposition, would reduce the COC concentrations found in the sediment. Five-Year Reviews would be required under this alternative to evaluate the continued adequacy of the remedy.

Partial Removal, Off-Yard Disposal, Containment, and LUCs

Alternative MS12A-03 would consist of removing contaminated sediment from the offshore portion of MS-12A outside Building 178, and also constructing a containment All dredged sediment would be dewatered, stockpiled, and characterized within the material handling area, then transported to an approved off-yard TSD facility. Contaminated sediment would remain inside Building 178 and would not be addressed until the fate of the building is decided; therefore, sediment removal would only be partial. The barrier would be constructed to prevent sediment remaining inside Building 178 from migrating to the Piscataqua River. Lastly, this alternative includes LUCs for areas where contamination remains in place (within Building 178). Five-Year Reviews would be required under this alternative to evaluate the continued adequacy of the remedy.

Complete Removal with Off-Yard Disposal

Alternative MS12A-04 would consist of complete removal with off-yard disposal of contaminated sediment from the offshore and onshore (within Building 178) portions of MS-12A. Alternative M12A-04 would remove all contaminated sediment; therefore, LUCs, O&M, monitoring, inspections, and Five-Year Reviews would not be required. All removed sediment would be dewatered, stockpiled, and characterized within the material handling area, then transported to an approved off-yard TSD facility.

MS-12B Alternatives

Monitored Natural Recovery

Alternative MS12B-02 would consist of allowing naturally occurring processes to reduce the ecological risks posed by the sediment COCs over time. Based on the location of MS-12B, the naturally occurring contamination reduction processes are limited to dispersion. Although sedimentation modeling has not been completed for MS-12B, it is expected that contaminant concentration would begin to decrease if sediment is removed from MS-12A. Sediment samples would be collected and analyzed in accordance with a long-term monitoring plan to provide the data needed for determining when concentrations are reduced to acceptable levels. LUCs would be implemented to prevent unauthorized disturbance of sediment until concentrations of COCs are less than cleanup levels. Five-Year Reviews would be required under this alternative to evaluate the continued adequacy of the remedy.

Hydraulic Dredging with Off-Yard Disposal

Alternative MS12B-03 would consist of complete removal and off-yard disposal of contaminated sediment from the offshore

area of MS-12B. Prior to removal, sampling would be conducted to verify the extent of contamination. Alternative MS12B-03 would remove contaminated sediment; therefore, LUCs, O&M, monitoring, inspections, and Five-Year Reviews would not be required. All dredged sediment would be dewatered, stockpiled, and characterized within the material handling area, and then transported to an approved off yard TSD facility.

EVALUATION OF ALTERNATIVES

EPA has established nine criteria for use in comparing the advantages/disadvantages of the cleanup alternatives. These criteria fall into three groups: threshold criteria, primary balancing criteria, and modifying criteria. These nine criteria are explained in the text box, What are the Nine Evaluation Criteria?, below. A detailed analysis of the alternatives can be found in the FS. The evaluated alternatives are compared based on seven of the nine criteria for MS-01, MS-03/MS-04, MS-12A, and MS-12B in Tables 2 through 5. The two modifying criteria, State Agency and Community Acceptance, are evaluated following the public comment period.

What are the Nine Evaluation Criteria?

The following is a summary of the nine criteria used to evaluate the remedial alternatives. The first two criteria are considered threshold criteria, and any alternative selected must meet them. The next five criteria are balancing criteria. The last two (the modifying criteria), state (MEDEP) and community acceptance, will be addressed after the public comment period on this Proposed Plan.

- 1. **Overall Protection of Human Health and the Environment** determines whether an alternative eliminates, reduces, or controls threats to public health and the environment through institutional controls, engineering controls, or treatment.
- 2. **Compliance with Applicable or Relevant and Appropriate Requirements (ARARs)** evaluates whether an alternative meets federal and state environmental statutes, regulations, and other requirements that pertain to the site, or whether a waiver is justified.
- 3. Long-Term Effectiveness and Permanence considers the ability of an alternative to maintain protection of human health and the environment.
- 4. **Reduction of Toxicity, Mobility, or Volume of Contaminants through Treatment** evaluates an alternative's use of treatment to reduce the harmful effects of principal contaminants, their ability to move in the environment, and the amount of contamination present.
- 5. **Short-Term Effectiveness** considers the length of time needed to implement an alternative and the risks the alternative poses to workers, residents, and the environment during implementation.
- 6. *Implementability* considers the technical and administrative feasibility of implementing an alternative, including factors such as the relative availability of goods and services.
- 7. **Cost** includes estimated capital and annual operations and maintenance costs, as well as present worth cost. Present worth cost is the total cost of an alternative over time in terms of today's dollar value. The alternative should provide the necessary protection for a reasonable cost. Cost estimates are expected to be accurate within a range of +50 to -30 percent.
- 8. **State/Support Agency Acceptance** considers whether the state agrees with EPA's and Navy's analyses and recommendations, as described in the FS and Proposed Plan.
- 9. **Community Acceptance** considers whether the local community agrees with the Navy and EPA's analyses and preferred alternative. Comments received on the Proposed Plan are an important indicator of community acceptance.

ALTERNATIVE	MS01-01	MS01-02	MS01-03
Estimated Time Frame (months)			
Designing and Constructing the Alternative	NA	12	15
Achieving the Cleanup Objectives	NA	24-48	15
Criteria Analysis			
Threshold Criteria			
Protects Human Health and the Environment Will it protect you and the animal life on and near the site?	0	•	•
Meets federal and state regulations Does the alternative meet federal and state environmental statutes, regulations, and requirements?	0	•	•
Primary Balancing Criteria			
Provides long-term effectiveness and is permanent Will the effects of the cleanup last?	0	•	•
Reduces mobility, toxicity, and volume of contaminants through treatment Are the harmful effects of the contaminants, their ability to spread, and the amount of contaminated material present reduced?	0	0	0
Provides short-term protection How soon will the site risks be reduced? Are there hazards to workers, residents, or the environment that could occur during cleanup?	NA	0	0
Can it be implemented Is the alternative technically feasible? Are the goods and services necessary to implement the alternative readily available?	NA	•	0
Cost (\$) Upfront costs to design and construct the alternative (capital costs) Operating and maintaining any system associated with the alternative (O&M costs) Periodic costs associated with the alternative Total cost in today's dollars (Net Present Worth [NPW] cost)	\$0	\$17,094 capital 30-year NPW: \$311,538	\$917,661capita 30-year NPW: \$917,661
Modifying Criteria			
State Agency Acceptance Does MEDEP agree with the Navy's recommendation?	To be determined	d after the public com	ment period
Community Acceptance What objections, suggestions, or modifications does the public offer during the comment period?	To be determined	d after the public com	ment period

ALTERNATIVE	MS0304-01	MS0304-02	MS0304-03
Estimated Time Frame (months)			
Designing and Constructing the Alternative	NA	12	15
Achieving the Cleanup Objectives	NA	60-120	15
Criteria Analysis			
Threshold Criteria			
Protects Human Health and the Environment Will it protect you and the animal life on and near the site?	0	•	•
Meets federal and state regulations Does the alternative meet federal and state environmental statutes, regulations, and requirements?	0	•	•
Primary Balancing Criteria			
Provides long-term effectiveness and is permanent Will the effects of the cleanup last?	0	0	•
Reduces mobility, toxicity, and volume of contaminants through treatment Are the harmful effects of the contaminants, their ability to spread, and the amount of contaminated material present reduced?	0	0	0
Provides short-term protection How soon will the site risks be reduced? Are there hazards to workers, residents, or the environment that could occur during cleanup?	NA	0	0
Can it be implemented Is the alternative technically feasible? Are the goods and services necessary to implement the alternative readily available?	NA	•	•
Cost (\$) Upfront costs to design and construct the alternative (capital costs) Operating and maintaining any system associated with the alternative (O&M costs) Periodic costs associated with the alternative Total cost in today's dollars (NPW cost)	\$0	\$17,904 capital 30-year NPW: \$323,481	\$745,410 capital 30-year NPW \$745,410
Modifying Criteria			
State Agency Acceptance Does MEDEP agree with the Navy's recommendation?	To be determined	after the public com	ment period
Community Acceptance What objections, suggestions, or modifications does the public offer during the comment period?	To be determined	after the public com	ment period

ALTERNATIVE	MS12A-01	MS12A-02	MS12A-03	MS12A-04
Estimated Time Frame (months)				
Designing and Constructing the Alternative	NA	13	15	15
Achieving the Cleanup Objectives	NA	60-120	15	15
Criteria Analysis				
Threshold Criteria				
Protects Human Health and the Environment Will it protect you and the animal life on and near the site?	0	•	•	•
Meets federal and state regulations Does the alternative meet federal and state environmental statutes, regulations, and requirements?	0	•	•	•
Primary Balancing Criteria				
Provides long-term effectiveness and is permanent Will the effects of the cleanup last?	0	•	•	•
Reduces mobility, toxicity, and volume of contaminants through treatment Are the harmful effects of the contaminants, their ability to spread, and the amount of contaminated material present reduced?	0	0	0	0
Provides short-term protection How soon will the site risks be reduced? Are there hazards to workers, residents, or the environment that could occur during cleanup?	NA	0	•	•
Can it be implemented Is the alternative technically feasible? Are the goods and services necessary to implement the alternative readily available?	NA	•	•	0
Cost (\$) Upfront costs to design and construct the alternative (capital costs) Operating and maintaining any system associated with the alternative (O&M costs) Periodic costs associated with the alternative Total cost in today's dollars (NPW cost)	\$0	\$369,626 capital 30-year NPW: \$675,807	\$1,305,682 capital 30-year NPW: \$1,601,353	\$1,134,478 capital 30-year NPW: \$1,134,478
Modifying Criteria				
State Agency Acceptance Does MEDEP agree with the Navy's recommendation?	To be determine	ed after the public	comment period	
Community Acceptance What objections, suggestions, or modifications does the public offer during the comment period?	To be determine	d after the public	comment period	

ALTERNATIVE	MS12B-01	MS12B-02	MS12B-03
Estimated Time Frame (months)			
Designing and Constructing the Alternative	NA	12	14
Achieving the Cleanup Objectives	NA	24-48	14
Criteria Analysis			
Threshold Criteria			
Protects Human Health and the Environment Will it protect you and the animal life on and near the site?	0	•	•
Meets federal and state regulations Does the alternative meet federal and state environmental statutes, regulations, and requirements?	0	•	•
Primary Balancing Criteria			
Provides long-term effectiveness and is permanent Will the effects of the cleanup last?	0	•	•
Reduces mobility, toxicity, and volume of contaminants through treatment Are the harmful effects of the contaminants, their ability to spread, and the amount of contaminated material present reduced?	0	0	0
Provides short-term protection How soon will the site risks be reduced? Are there hazards to workers, residents, or the environment that could occur during cleanup?	NA	0	o
Can it be implemented Is the alternative technically feasible? Are the goods and services necessary to implement the alternative readily available?	NA	•	0
Cost (\$) Upfront costs to design and construct the alternative (capital costs) Operating and maintaining any system associated with the alternative (O&M costs) Periodic costs associated with the alternative Total cost in today's dollars (NPW cost)	\$0	\$17,094 capital 30-year NPW: \$309,149	\$428,824 capital 30-year NPW \$428,824
Modifying Criteria			
State Agency Acceptance Does MEDEP agree with the Navy's recommendation?	To be determined	l after the public com	ment period
Community Acceptance What objections, suggestions, or modifications does the public offer during the comment period?	To be determined	l after the public com	ment period

PREFERRED ALTERNATIVES

Based on information available at this time, the Navy recommends Alternatives MS01-03, MS0304-03, MS12A-04, and MS12B-03 to address contaminated sediment at OU4 and to provide long-term risk reduction. The Navy believes that these preferred alternatives meet the threshold criteria and provide the best balance of tradeoffs among the other alternatives with respect to the modifying criteria (Tables 2 through 5). The Interim Offshore Monitoring Program determined that there were no unacceptable risks at these monitoring stations; therefore, no further action is the preferred alternative for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14. The Navy proposes that the preferred alternatives be the final remedies for OU4.

The Navy expects the preferred alternatives to satisfy the following statutory requirements of CERCLA Section 121(b): (1) be protective of human health and the environment; (2) comply with ARARs; (3) be cost-effective; and (4) utilize permanent solutions to the maximum extent practicable. The Navy may decide to change its preferred alternatives in response to public comment or new information. After the end of the public comment period on this Proposed Plan, the Navy, with the concurrence of EPA and after consultation with MEDEP, will document its selected remedy in a ROD.

The Navy proposes removal of contaminated sediment to reduce concentrations of COCs for MS-01 (PAHs), MS-03 (copper), MS-04 (copper and PAHs), MS-12A (lead and PAHs), and MS-12B (lead) to cleanup levels (see Table 1 on Page 9) The Navy proposes to remove to meet the RAO. contamination such that LUCs, O&M, monitoring, inspection, and Five-Year Reviews would not be required as part of implementation of these remedies. The proposed MS-01, MS-03 and MS-04, MS-12A, and MS-12B alternatives (Figures 4, 5, 6, and 7) would include excavation of sediment at each monitoring station to a depth defined for each area to meet the RAO and cleanup levels, dewatering of excavated sediment, and disposal in an off-yard landfill. For MS-12A, the alternative would include excavation of offshore sediment (outside of Building 178) and within the intertidal area of Building 178 (see Figure 6). The remedial action documents would specify the requirements for dredging, dewatering, and disposal. Sampling would be conducted to make sure that contaminated sediment is removed such that the RAO and cleanup levels are met, and the remedial action documents would specify the requirements for sampling.

Alternatives MS01-03, MS0304-03, and MS12B-03 are preferred over the other alternatives for these monitoring stations because they provide the Navy's preferred balance between long-term effectiveness for current and planned future industrial use of the site, implementability, and cost. Alternatives MS01-03, MS0304-03, and MS12B-03 would remove contaminated sediment at each respective

monitoring station and prevent potential exposure to ecological receptors, rather than relying on natural attenuation to gradually decrease COC concentrations, as provided under Alternatives MS01-02, MS0304-02, and MS12B-02. The additional cost of Alternatives MS01-03, MS0304-03, and MS12B-03, as compared to the costs of MS01-02, MS0304-02, and MS12B-02, are warranted because of the significantly greater protection they provide in the long-term. It is anticipated that Alternatives MS01-03, MS0304-03, and MS12B-03 would achieve cleanup goals a year or more before the respective alternatives MS01-02, MS0304-02, and MS12B-02.

Alternative MS12A-04 is preferred over the other alternatives because it provides the Navy's preferred balance between long-term effectiveness for current and planned uses of the monitoring station, implementability, and cost. Alternative MS12A-04 would remove contaminated sediment from the monitoring station and prevent potential exposure to ecological receptors, rather than relying on natural attenuation to gradually decrease COC concentrations. The removal of sediment would also prevent any future migration of contaminated sediment from the intertidal area inside Building 178 to the offshore area without the need for placement and long-term O&M of a containment barrier. Alternative MS12A-02 would not include any direct removal of contamination, and would rely on natural processes to gradually decrease COC concentrations. It is anticipated that Alternatives MS12A-03 and MS12A-04 would achieve cleanup goals a year or more before Alternative MS12A-02. Alternative MS12A-04 requires a significantly greater cost than Alternative MS12A-02, and a slightly lesser cost than Alternative MS12A-03.

Overall, the Navy prefers excavation of contaminated sediment over the monitored natural recovery alternative because excavation will actively reduce concentrations in the offshore sediment to less than cleanup levels in a shorter time with greater confidence in achievement of the RAO. Onshore removal actions have been conducted to eliminate the sources of contamination to the offshore from IRP sites and reduction in concentrations of COCs at the various monitoring stations has been observed over the course of the interim offshore monitoring program. However, residual concentrations of COCs in sediment in portions of these four monitoring stations remain at levels that are a potential ecological risk. Excavation of contaminated sediment to meet cleanup levels at MS-01, MS-03, MS-04, and MS-12, and no further action for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14 would result in no further risks associated with Site 5 and the OU4 AOCs, thereby resulting in unlimited use and unrestricted exposure for OU4 and removal of OU4 from the IRP. With the implementation of the final remedies for OU4, interim offshore monitoring will be discontinued.

Pigure 4 - Alternative MS01-03 - Dredging with Off-Yard Disposal

Pigure 4 - Alternative MS01-03 - Dredging with Off-Yard Disposal

Pigure 4 - Alternative MS01-03 - Dredging with Off-Yard Disposal

Average Sediment Thickness is 2 Feet

Average Sediment Thickness is 2 Feet

Average Sediment Thickness is 2 Feet

Legend

Pigure 4 - Alternative MS01-03 - Dredging with Off-Yard Disposal

Average Sediment Thickness is 2 Feet

Figure 6 - Alternative MS12A-04 - Complete Removal and Off-Yard Disposal

Figure 7 - Alternative MS12B-03 - Dredging with Off-Yard Disposal

FIVE-YEAR REVIEW REQUIREMENTS

Contamination would not remain at OU4 in excess of levels that allow for unlimited use and unrestricted exposure; therefore, reviews of the remedy protectiveness would not be needed every 5 years.

COMMUNITY PARTICIPATION

The public is encouraged to participate in the decision-making process for the cleanup of OU4 by reviewing and commenting on this Proposed Plan during the public comment period, which is February 27 to March 28, 2013.

What Do You Think?

You do not have to be a technical expert to comment. If you have a comment, the Navy would like to hear it before beginning the cleanup.

What is a Formal Comment?

Federal regulations make a distinction between "formal" comments received during the 30-day comment period and "informal" comments received outside this comment period. Although the Navy uses comments throughout the cleanup process to help make cleanup decisions, it is required to respond to formal comments.

Your formal comments will become part of the official record for OU4. This is a crucial element in the decision-making process for the site.

The Navy will consider all significant comments received during the comment period prior to making the final cleanup decision for the site. Written comments will be included in the Responsiveness Summary contained in the ROD.

Formal comments can be made in writing or made orally. To make a formal comment on the Proposed Plan, you may:

- Offer oral comments during the public hearing on March 13, 2013.
- Provide written comments at the informational open house, public hearing, or by fax or mail. Comments must be postmarked no later than March 28, 2013.

A tear-off mailer is provided as part of this document for your convenience.

NEXT STEPS

The Navy will consider and address all significant public comments received during the comment period. The responses to comments will be included in the Responsiveness Summary in the ROD, which will document the final CERCLA remedies selected by the Navy and EPA, in consultation with MEDEP, for OU4. After the ROD is signed, it will be made available to the public on the public website and at the Information Repositories.

To Comment Formally:

Send Written Comments postmarked no later than March 28, 2013 to:

Ms. Danna Eddy
Public Affairs Office (Code 100PAO)
Portsmouth Naval Shipyard
Portsmouth, NH 03804-5000

Fax Comments by March 28, 2013, to the attention of:

Ms. Danna Eddy
Public Affairs Office (Code 100PAO)
Portsmouth Naval Shipyard
Fax: (207) 438-1266

For More Detailed Information You May Go to the Public Information Repository or Public Website

The Proposed Plan was prepared to help the public understand and comment on the preferred cleanup alternatives for OU4 and provides a summary of a number of reports and studies.

Information Repositories

Rice Public Library 8 Wentworth Street Kittery, Maine 03904 Telephone: (207) 439-1553

Portsmouth Public Library 175 Parrott Avenue Portsmouth, New Hampshire 03801 Telephone: (603) 427-1540

Public Website
http://go.usa.gov/vvb

GLOSSARY OF TERMS

This glossary defines the bolded terms used in this Proposed Plan. The definitions in this glossary apply specifically to this Proposed Plan and may have other meanings when used in different circumstances.

Applicable or Relevant and Appropriate Requirements (ARARs): The federal, state, and local environmental rules, regulations, and criteria that must be met by the selected cleanup action under CERCLA.

Assessment Endpoint: An assessment is a component of the ecosystem that may be impacted by the stressors of concern, has ecological and societal value, and represents a component of the ecosystem that can be protected.

Chemical of Concern (COC): Chemicals of potential concern that through further evaluation in human health and screening-level ecological risk assessment are determined to present a potential adverse effect on human and ecological health and the environment.

Cleanup Level: A numerical concentration agreed upon by the Navy and EPA, in consultation with MEDEP, as having to be reached for a certain COC to meet one or more of the RAOs. A cleanup level may be a regulatory-based criterion, a risk-based concentration, or even a background value.

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA): A federal law also known as "Superfund." This law was passed in 1980 and modified in 1986 by the Superfund Amendments and Reauthorization Act. This law created a tax on the chemical and petroleum industries and provided broad federal authority to respond directly to releases or threatened releases of hazardous substances that may endanger public health or the environment.

Estuarine Ecological Risk Assessment (EERA): An evaluation of current and future potential for adverse effects on ecological receptors in an estuary from exposure to site contaminants.

Feasibility Study (FS): A report that presents the description and analysis or evaluation of potential cleanup alternatives for a site. The report also provides other remedial options screened out in the Feasibility Study that were not considered to be applicable for the site conditions.

Human Health Risk Assessment: An evaluation of current and future potential for adverse human health effects from exposure to site contaminants.

Metals: Metals are naturally occurring elements. Some metals, such as arsenic and mercury, can have toxic effects. Other metals, such as iron, are essential to the metabolism

of humans. Metals are classified as inorganic because they are a mineral, and not of biological origin.

National Oil and Hazardous Substances Pollution Contingency Plan (NCP): More commonly called the National Contingency Plan, it is the federal government's blueprint for responding to both oil spills and hazardous substance releases. Following the passage of Superfund (CERCLA) legislation in 1980, the NCP was broadened to cover releases at hazardous waste sites requiring emergency removal actions. A key provision involves authorizing the lead agency to initiate appropriate removal action in the event of a hazardous substance release.

Net Present Worth (NPW): A costing technique that expresses the total of initial capital expenditure and long-term operation and maintenance costs in terms of present day dollars.

Polycyclic aromatic hydrocarbons (PAHs): High molecular weight, relatively immobile, and moderately toxic solid organic chemicals that feature multiple benzenic (aromatic) rings in their chemical formula. PAHs are normally formed during the incomplete combustion of coal, oil, gas, garbage, or other organic substances. High molecular weight (HMW) PAHs are made up of four to seven aromatic rings. These PAHs are generally less toxic to aquatic organisms than low molecular weight (LMW) PAHs, but some are still known carcinogens.

Record of Decision (ROD): An official document that describes the selected cleanup action for a specific site. The ROD documents the cleanup selection process and is issued by the Navy following the public comment period.

Remedial Action Objective (RAO): A cleanup objective agreed upon by the Navy and EPA, in consultation with MEDEP. One or more RAOs are typically formulated for each environmental site.

Remedial Investigation (RI) or Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI): An in-depth study designed to gather data needed to determine the nature and extent of contamination at a Superfund or RCRA site, establish site cleanup criteria, identify preliminary alternatives for remedial action, and support technical and cost analyses of alternatives.

Use This Space to Write Your Comments

Your input on the Proposed Plan for contamination at OU4 at Portsmouth Naval Shipyard is important to the Navy, EPA, and MEDEP. Comments provided by the public are valuable in helping to select the remedy for this site.

You may use the space below to write your comments, then fold and mail. Comments must be postmarked by March 28, 2013. Comments can be submitted via mail or fax and should be sent to the following address:

Ms. Danna Eddy Public Affairs Office (Code 100PAO) Portsmouth Naval Shipyard Portsmouth, NH 03804-5000

Fax: (207) 438-1266

Name:	
Address:	
City:	
State:	Zip Code:
Telephone:	

FOLD HERE	
	PLACE
	STAMP
	HERE

Ms. Danna Eddy
Public Affairs Office (Code 100PAO)
Portsmouth Naval Shipyard
Portsmouth, NH 03804-5000

OBITUARIES/NEW HAMPSHIRE

HEALTH INDUSTRY: N.H. DRUG TESTING BILL IS TOO VAGUE

BY MORGAN TRUE **Associated Press**

CONCORD - Representatives from the health care industry said Tuesday they have a vested interest in stopping employees from stealing controlled substances, but a bill being considered by New Hampshire lawmakers to drug test their workers is too vague.

The proposal is part of the legislative response to a recent scandal at Exeter Hospital, where an employee allegedly stole drugs and replaced them with hepatitis C-infected syringes later used on patients.

Chief among industry concerns aired at a legislative hearing are the definition of a health care worker and who would pay for the drug tests — specifics not included in the one-page bill.

At the House Committee on Health Human Services and Elderly Affairs hearing, there was a tense exchange between Gary Cahoon, operator of an assistedliving facility in New Ipswich, and Rep. Patrick Culbert, R-Pelham, over how to define a health care worker.

"It surely isn't kitchen help," Culbert said, sounding agitated. The bill would require all health care workers be ranper year. Its sponsor, Rep. Tim Copeland, R-Stratham, was not present to answer questions.

In the 28 years he's worked at the assisted-living home, Cahoon said he's seen close to a half-dozen cases of employees stealing drugs, and he acknowledged such cases are increasing. But he estimated that if he had to pay for drug testing all 15 of his employees, it would cost him 1 percent of his total profits — a heavy burden during tight financial times.

Betsy Miller, with the New Hampshire Association of before the House committee Counties, said a recent case at votes on it.

Merrimack County Nursing Home, where a contracted employee allegedly tried to steal liquid pain medication, drives home the need for such legislation, but, without specifics, she can't support the bill.

Miller added there is already a system for testing workers that gives employers probable cause, such as showing signs of intoxication on the job. Devon Chaffee, with the New Hampshire Civil Liberties Union, said drug testing without probable cause could violate workers' constitutional rights.

Steve Ahnen, president of the New Hampshire Hospital Association, said his group is not taking a position on the legislation, but thanked lawmakers for working to address the issue.

"(This bill) is a measure that was introduced in the wake of the tragic events that occurred last summer," he said, referring to the hepatitis C outbreak at Exeter Hospital. "I just want to comment about what an awful and horrific situation that was, and is, for those patients, their families and their caregiv-

David Kwiatkowski, a traveling medical worker whom prosecutors describe as a "serial infector," was hired in Exeter in April 2011 after working domly drug tested four times in 18 hospitals in Arizona, Georgia, Kansas, Maryland, Michigan, New York and Pennsylvania. Thirty-two Exeter Hospital patients have been found to have the same strain of the liver-destroying virus Kwiatkowski carries.

Rep. Tom Sherman, D-Rye, a physician at Exeter Hospital who serves on the hospital association's steering committee, said the bill was written prior to the hospital association developing recommendations to meet the filing deadline. He added it will likely be amended

3rd man to be sentenced in missing mom case

CONCORD (AP) — A New Hampshire man has reached a plea agreement with prosecu- Papile drove to the ski area. Paptors in the 2011 disappearance ile, a former ski area employee and death of a Maine woman who helped build the snowmakwhose toddler daughter was ing pond admitted he held her found abandoned in her car.

Michael Petelis of Ossipee is scheduled for a plea-andsentencing hearing at 1 p.m. today in Carroll County Superior Court.

Petelis was charged with conspiracy to commit robbery in the case of Krista Dittmeyer, of Portland, Maine. Her body was found in a snowmaking pond at Cranmore Mountain in Conway five days after her car was found idling in the ski area's parking lot — her 14-month-old daughter unharmed inside.

Prosecutors said Dittmeyer was lured to Petelis's apartment by her close friend, Anthony Papile, also of Ossipee. Senior Assistant Attorney Jane Young said at Papile's sentencing last May that Papile clubbed Dittmeyer in the head three times as she was climbing the stairs. Aliyah.

Prosecutors said the pair had plotted to steal drugs and money from her.

Young said Papile and Petelis bound Dittmeyer's legs and torso with duct tape and put her in the trunk of her car, which bound body underwater and then pushed her away from land. The cause of her death was prolonged cold-water submersion.

Papile was sentenced to 50 years in prison for Dittmeyer's

Another man, Trevor Ferguson of Tamworth, was sentenced to at least seven years in prison for conspiring to rob her. Prosecutors said Ferguson agreed to give Papile a ride home from the ski area in exchange for money

At Papile's sentencing, Dittmeyer's mother tearfully recalled what a loving mother she was to her daughter, Aliyah.

"That day in April, Anthony Papile took away my daughter, a sister, a mother and a kind and loving friend," said Lanell Shackley, who is caring for

www.seacoastlegals.com

The place to find all legal notices published in Seacoast Media Group's five newspapers:

> Portsmouth Herald, Exeter News-Letter, Hampton Union, York Weekly, York County Coast Star

Legal Notice

New Hampshire Department of Education Request for Proposals (RFP) **Educational Surrogate Parent Program: Regional Master Surrogate Parents** RFP #SPED-2013-1

The NH Department of Education, Bureau of Special Education is currently seeking proposals for up to five (5) Regional Master Educational Surrogate Parents who will be responsible fDI providing management, phone and e-mail support for educational surrogate parents in assigned regions. The five (5) regions are: (1) North Country; (2) Lakes Region; (3) Southwest: (4) South Central: and, (5) Southeast.

A request for a copy of the RFP may be made to Barbara Raymond at 603-271-3791 or Barbara.Raymond@doe.nh.gov: on the web at: http://www.education.nh.gov/rfp/index.htm.

The deadline for submittal of proposals is 4:00pm, Friday, March 15, 2013.

Virginia M. Warner

CAPE NEDDICK, Maine Virginia "Ginny" Marilyn Warner, 79, passed away Sunday, Feb. 24, 2013, at Portsmouth Regional Hospital, after a brief illness.

Ginny was born Lake. Her favorite March 12, 1933, in Fitch- pastime was searching for burg, Mass., the daughter of moose, deer, loons and other the late Alice G. (Webber) wildlife. Lawrence and Robert F. Lawrence. From early childhood, she grew up on Logging Road in Cape Neddick. She graduated from York High School in 1950 and earned an associate's degree in liberal arts from Colby Sawyer College in 1952. Upon graduation, she worked as a dental assistant for Dr. Filson in Ogunquit, Maine.

On Feb. 27, 1954, she married the love of her life, Henry F. Warner Jr. They most of their lives. While active both in the community and in her church; she and his wife, Andrea, and and also volunteered for many years at York Hospital. his wife, Kirsten, and their

of Cape Neddick Baptist Jonathan; and several cous-Church, Ginny served as Christian education chairperson, Sunday School superintendent, missions advocate, Sunday School teacher, and Vacation Bible School director and teacher. She belonged to American Baptist Women, Children's Message and The Prayer Chain, and enjoyed singing in the choir. On three occasions, she served on the Pastoral Search Committee. For several years, Ginny organized the America for Christ Walkathon.

Ginny was a devoted wife, mother and grandmother. She en-

joyed being with her family and friends. She and Henry loved spending time at their on Brassua camp

Throughout the years, Ginny was involved in the activities of her children and grandchildren; she attended many of their sporting and school-related events.

The family would like to thank the staff of Durgin Pines for providing excellent care.

She is survived by her husband, Henry F. Warner Jr.; son Henry F. "Mickey" Warner III and his wife, Ginny, and her children, William resided on Logging Road for Woodward, Jonathan Woodward and his wife, Sarah, and raising a family, Ginny was their children, Lauren and Jason; son Robert F. Warner worked as a teacher's aide their sons, Eric and Wesley; son Ronald C. Warner and As a lifelong member two children, Lindsay and

> SERVICES: Calling hours for Ginny will be held from 5 to 8 p.m. Thursday, Feb. 28, in the Lucas & Eaton Funeral Home, 91 Long Sands Road, York. A funeral service will be held at 1 p.m. Saturday, March 2, in the Cape Neddick Baptist Church, 34 River Road, Cape Neddick. In lieu of flowers, consider donating to Cape Neddick Baptist Church or York Hospital. Visit www.lucas eatonfuneralhome.com.

Robert C. Edgerly

NEWMARKET -Robert C. Edgerly, 73, of Newmarket, died Monday, Feb. 25, 2013, at Exeter Hospital, after a long illness.

Born Oct. 5, 1939, in Newmarket, he was the son of Charles and Lucille (Smith) Edgerly and was a lifelong resident of Newmarket.

& Flynn for 30-plus years Fred Edgerly of Newmarket; prior to his retirement.

Bob loved spending time and cousins. with his family and friends at camp, hanging out in the garage, hunting and fishing.

He was a 30-year member of the Sons of The American Legion, Squadron 67, and was a member of Lamprey Aerie No. 1934 Fraternal Order of Eagles, both in Newmarket, and the Dover Lodge of Elks No. 184.

He is survived by his wife of 50 years, Loretta (Young) Edgerly of Newmarket; three children, Richard C.

Edgerly and his wife, Penny, of Newmarket. Robin Olson and her husband, Robert Jr., of Newington, and Rhonda Reilly and her husband, Wayne, Newmarket; five grandchildren, Rich-

ard R. Edgerly, Jayson A. Edgerly, Robert Andrew Olson III, Jessica Clay and Sarah Reilly; six great-He was employed with Bell grandchildren; a brother, and several nieces, nephews

> SERVICES: There will be a celebration of Bob's life from 1 to 4 p.m. Saturday, March 9, at the Robert G. Durgin American Legion Hall, Main Street, Newmarket. Family and friends are invited. Rather than flowers, should friends desire, memorials may be made to Newmarket Fire & Rescue, 4 Young Lane, Newmarket, NH 03857, Visit www.kentandpelczarfh.com to sign an online guest book.

www.seacoastonline.com/spotlight

Obituary Guidelines

For guidelines on how to submit an obituary, visit www.seacoastonline.com/SubmitObit

Legal Notice NOTICE OF FORECLOSURE SALE AT PUBLIC AUCTION SELF-STORAGE OPERATORS FACILITY LIEN SALE TO BE SOLD ON THE PREMISES CONTENTS OF STORAGE UNITS TO COLLECT STORAGE CHARGES

A. Storage King LLC will sell at public auction at 10:00 am on Fri-

day, March 8, 2013. A. Storage King LLC, Exeter, New Hampshire, contents of the following mini-storage units believed to contain household furnishings and business items: Unit #0406 Shanti Curley; Units #0233, #0309 Cheryl Gilman-White; Unit #0409 Bruce Warner; Unit #0114 Jennifer Weitz; Unit #0105 David Weston Storage units contain furniture, household items and more. The doors and containers will be open and visible inspection can be made at the time of bidding. There are no warranties expressed or implied. Terms: Cash, Certified Check – 10% Buyers premium. A. Storage King LLC reserves the right to withdraw items at the time of auction due to owners' redemption. All items will be sold to the highest bidder. Paul J. Maglio Auctioneer Storage Auction Solutions NH LIC#4001. A. Storage King LLC 6 Kingsway Ave. Exeter, NH 03833 603-772-4500.

2tPHE 2/27, 3/1

#2739

Helen D. Place

TEWKSBURY, Mass. — Helen D. (Johnson) Place, 94, of Tewksbury and York, Maine, passed away Monday, Feb. 25, 2013.

Helen was born April 17, 1918, in East Greenwich, R.I., daughter of the late Maude Todd Peterson, Tiffany Leb-(Sayles) and Menus Johnson. She grew up in Providence, graduating from Hope High School before she began to work for Cherry & Webb.

After she married Elmer M. Place, she stayed at home for several years to be with her children and then worked at Commercial Bank & Trust for nearly 20 years. She and her husband Elmer also loved the beaches and waterfront on Cape Cod, where they had a home on Marstons Mills and often visited the harbor in Osterville.

Those who knew Helen will remember a woman whose life revolved around faith and family. She was a devoted member of the Fourth Baptist Church in Providence.

Elmer, her husband of 50 years, passed away in 1992. Her two sisters and one brother also predeceased

She is survived by her home.com.

daughters, Marcia Warren and her husband, Christopher, Linda Lucas and her husband, Charles and Joan Keeler; her son David Place, and Barbara; her grandchil-

dren, Melissa Flores, ron, Christopher and Ashley Lucas, Jeffrey and John Keeler, Heidi Stuck, and Kristen, Matthew and Joshua Place; 17 great-grandchildren; and several nieces and nephews.

SERVICES: All are invited to a calling hour for Helen from 10 to 11 a.m. Thursday Feb. 28, at Roney Funeral Home, 152 Worcester St., North Grafton, followed by the celebration of her funeral service at 11:30 a.m. at Liberty Church, 495 Hartford Turnpike, Shrewsbury. She will then be laid to rest with her husband at Acotes Hill Cemetery in Chepachet, R.I. In lieu of flowers, her family requests honoring with memorial donations to Liberty Church, 495 Hartford Turnpike, Shrewsbury MA 01545. Directions and an online condolence book to share memories of Helen are available at www.roneyfuneral

Richard E. LeClair

NORTH HAMPTON — Richard E. LeClair, 86, of North Hampton, died Monday, Feb. 25, 2013, at Exeter Hospital.

He was born April 14, 1926, in Claremont, a son of the late Alexander and Rosanna (Dansereau) LeClair. Raised in Claremont, he was a 1944 graduate of Stevens High School.

A veteran of World War II, Mr. LeClair enlisted as an aviation cadet and served as a tail gunner in B-17s and as a flight engineer in B-25s with the U.S. Army Air Forces. He was a sergeant when honorably discharged in 1946.

In 1951, he graduated from Keene State College, and he received his master's degree in education from Boston University in 1960. His career in education began in 1951 at Colebrook Academy, Colebrook. He later worked many years as a counselor at Northern Essex Community College in Haverhill, Mass., where he retired in 1988.

Mr. LeClair resided in North Hampton since 1969, coming from Kingston. He ance Association and the com.

Keene Teachers Alumni Association.

He shared 59 years of marriage with his wife, Mary P. (Morency) LeClair.

In addition to his wife, family members include three sons, Keith A. LeClair and Brett M. LeClair, both of North Hampton, and Brian Le Clair of Pasadena, Calif.; a brother, Alec LeClair of Newbury;

two sisters, Eleanor Jones of Claremont and Carolyn Sheehan of Tampa, Fla.; and many nieces and nephews. SERVICES: A Mass of Christian

burial will be celebrated at 10 a.m.. Friday, March 1, at St. Theresa Church, 815 Central Road, Rye Beach. Interment will be private in the Center Cemetery, North Hampton. in the spring. In lieu of flow-

ers, donations may be made to the St. Theresa Church for their Christmas Program, or to Maryknoll Lay Missioners, P.O. Box 307, Maryknoll, NY 10545-0307. Arrangements are by the Remick & Gendron Funeral Home-Crematory, Hampton. For directions or to sign an online guest was a member of the Guid-book, visit www.RemickGendron.

Legal Notice PUBLIC NOTICE

The Department of the Navy announces the availability for public comment of the Proposed Plan for cleanup of contamination at Operable Unit (OU) 4 at Portsmouth Naval Shipyard (PNS). This plan was prepared under the Comprehensive Environmental Response, Compensation and Liability Act (also known as Superfund). The public comment period for this Proposed Plan begins February 27, 2013 and ends March 28, 2013.

OU4 includes Site 5 - the Former Industrial Waste Outfalls, and six areas of concern

(AOCs). The former outfalls were along the Piscataqua River at the western end of PNS (in one of the AOCs), and past contamination from Site 5 is addressed as part this AOC. The AOCs are nearshore habitats adjacent to PNS that may have been affected by onshore Installation Restoration Program (IRP) sites. An interim action that required monitoring for OU4 was selected and implemented in 1999. As part of the interim monitoring, fourteen monitoring stations (labeled MS-01 through MS-14) were identified to provide coverage of the offshore AOCs. The interim monitoring program showed that chemicals of concern (COCs) for the offshore sediment are select polycyclic aromatic hydrocarbons and metals. Concentrations at COCs in sediment at some of the monitoring stations were greater than acceptable levels for ecological exposure (to organisms living in the sediment referred to as benthic invertebrates). The Navy has taken actions to eliminate the onshore IRP sources of contamination; however, additional action is required to address potential risks remaining in sediment at some of the monitoring stations at OU4. The OU4 cleanup alternatives were evaluated according to these

Based on the OU4 investigation results, it was determined that risks are acceptable and therefore No Further Action is necessary for MS-02, MS-05, MS-06, MS-07, MS-08, MS-09, MS-10, MS-11, MS-13, and MS-14. COC concentrations in sediment at MS-01, MS-03, MS-04, and MS-12 were greater than acceptable levels and potential cleanup alternatives of monitored natural recovery, sediment removal, and/or containment were evaluated. MS-03 and MS-04 were combined due to close proximity and similarity in contamination, and MS-12 was evaluated as two areas, MS-12A and MS-12B, because of different levels of contamination and different planned site uses for the area. The Navy evaluated the effectiveness, implementability, and cost of these alternatives, and based on the results of the evaluation, the Navy's preferred method of addressing sediment contamination at MS-01, MS-03, MS-04, MS-12A, and MS-12B is to remove contaminated sediment and dispose of the sediment off yard.

Community input is integral to the remedy selection process. The public is encouraged to review the Proposed Plan for OU4 on the Navy's public website for PNS or at the Information Repositories at Rice and Portsmouth Public Libraries during normal hours of operation:

Rice Public Library 8 Wentworth Street Kittery, ME 03904

Portsmouth Public Library 175 Parrott Avenue Portsmouth, NH 03801

Public Website http://go.usa.gov/vvb (see the Administrative

On March 13, 2013, the Navy will hold a public meeting at the Kittery Town Hall in Kittery, Maine, consisting of an informational session to be held from 7:45 to 8:15 pm where Navy personnel will be on hand to provide information and answer questions regarding the OU4 proposed cleanup. Following this informational session, the Navy will accept oral and written comments from the public from 8:15 to 8:45 pm. Written comments can also be submitted during the public comment period by mail or fax to the Navy contact listed below, and must be postmarked no later than March 28, 2013.

> Ms. Danna Eddy, Public Affairs Office (Code PAO100) Portsmouth Naval Shipyard, Portsmouth, NH 03804-5000 Telephone: 207-438-1140 Fax: 207-438-1266

1t P 2/27

Tetra Tech

Advertiser:

148699

Ad Number:

X X

ber:

Insertion Num

Agency:

Section-Page-Zone(s):

2 Col x 7.5

¥

Color Type:

Size:

Wednesday, February 27,

Description:

O

EPT

escription

create

not

You

indicated.

ge

pai

and

date

the

0

newspaper

S S

∞

J. Foste

George

evidence that the

B/06/

Announcements

Arthur Morin

John McIsaac

June Molbeck

Michael Schere

Michele & Dave Berry

ETRA TECH NUS INC

2x15.00

B&W

ype

Color

Size:

HAVE YOU HEARD?

We now offer FREE merchandise ads on items priced up to \$1000! Place your ad online or send it to us via email or mail. Sorry, we cannot accept these ads over the phone. Ads will publish based on space availability, on a first come, first served basis. Sorry, no pet or transportation ads are included in this promotion.

Announcements

Unit #

C-5

C-17

E-73

M-20

17

Public Notice

Stor-All Mini Storage

113 Milton Rd, Rochester, NH 03868

Due to various unsuccessful and/or ignored attempts

at notification of default in storage payment, legal no-

tice of disposal is hereby given to the following indi-

PUBLIC NOTICE

The Department of the Navy announces the

availability for public comment of the Proposed Plan

for cleanup of contamination at Operable Unit (OU) 4

at Portsmouth Naval Shipyard (PNS). This plan was

prepared under the Comprehensive Environmental

Response, Compensation and Liability Act (also

known as Superfund). The public comment period

for this Proposed Plan begins February 27, 2013

OU4 includes Site 5 - the Former Industrial Waste

Outfalls, and six areas of concern (AOCs). The

former outfalls were along the Piscataqua River

at the western end of PNS (in one of the AOCs),

and past contamination from Site 5 is addressed as

part this AOC. The AOCs are nearshore habitats

adiacent to PNS that may have been affected by

onshore Installation Restoration Program (IRP) sites.

An interim action that required monitoring for OU4

was selected and implemented in 1999. As part of

the interim monitoring, fourteen monitoring stations

(labeled MS-01 through MS-14) were identified

to provide coverage of the offshore AOCs. The

interim monitoring program showed that chemicals

of concern (COCs) for the offshore sediment are

select polycyclic aromatic hydrocarbons and metals.

Concentrations at COCs in sediment at some of the

monitoring stations were greater than acceptable

levels for ecological exposure (to organisms living in

the sediment referred to as benthic invertebrates).

The Navy has taken actions to eliminate the onshore

IRP sources of contamination; however, additional

action is required to address potential risks

remaining in sediment at some of the monitoring

stations at OU4. The OU4 cleanup alternatives were

Based on the OU4 investigation results, it was

determined that risks are acceptable and therefore

No Further Action is necessary for MS-02, MS-05,

11, MS-13, and MS-14. COC concentrations in

sediment at MS-01, MS-03, MS-04, and MS-12

were greater than acceptable levels and potential

cleanup alternatives of monitored natural recovery,

sediment removal, and/or containment were

evaluated. MS-03 and MS-04 were combined due

to close proximity and similarity in contamination,

and MS-12 was evaluated as two areas, MS-

12A and MS-12B, because of different levels of

contamination and different planned site uses for

the area. The Navy evaluated the effectiveness,

implementability, and cost of these alternatives,

and based on the results of the evaluation, the

Navy's preferred method of addressing sediment

contamination at MS-01, MS-03, MS-04, MS-12A,

and MS-12B is to remove contaminated sediment

Community input is integral to the remedy selection

process. The public is encouraged to review the

Proposed Plan for OU4 on the Navy's public website

for PNS or at the Information Repositories at Rice

and Portsmouth Public Libraries during normal

Rice Public Library

8 Wentworth Street

Kittery, ME 03904

207-439-1633

Portsmouth Public Library

175 Parrott Avenue

Portsmouth, NH 03801

603-427-1540

Public Website

http://go.usa.gov/vvb

(see the Administrative Record tab)

On March 13, 2013, the Navy will hold a public

meeting at the Kittery Town Hall in Kittery,

Maine, consisting of an informational session to be

held from 7:45 to 8:15 pm where Navy personnel

will be on hand to provide information and answer

questions regarding the OU4 proposed cleanup.

Following this informational session, the Navy will

accept oral and written comments from the public

from 8:15 to 8:45 pm. Written comments can also

be submitted during the public comment period by

mail or fax to the Navy contact listed below, and

must be postmarked no later than March 28, 2013.

Ms. Danna Eddy

Public Affairs Office (Code PAO100)

Portsmouth Naval Shipyard

Portsmouth, NH 03804-5000

Telephone: 207-438-1140 • Fax: 207-438-1266

and dispose of the sediment off yard.

hours of operation:

MS-06, MS-07, MS-08, MS-09, MS-10,

evaluated according to these monitoring stations.

and ends March 28, 2013.

viduals: units to be disposed of March 6, 2013

Public Notice

Announcements

new voter registrations.

Foster's Daily Democrat Classified Marketplace

February 27, 2013

Announcements

CORRECTION

LEGAL NOTICE

Town of Newington, New Hampshire Supervisors of the Checklist

PUBLIC NOTICE

Jane K. Kendall, Paula Caceda & Susan Philbrick

Supervisors of the Checklist

CITY OF ROCHESTER
NOTICE OF PUBLIC HEARING

Notice is hereby given that the Codes and Ordinances Comm tee of the Rochester City Council will conduct a Public Hear-ing on Thursday, March 7, 2013 at 7:00 p.m. in the City Coun-

il Chambers, City Hall, 31 Wakefield Street, Rochester, NH,

AMENDMENT TO ORDINANCES

CREATING CHAPTER 18 OF THE GENERAL ORDINANCES OF THE CITY OF ROCHESTER ENTITLED

REGULATION OF CROSS-CONNECTIONS

TO PREVENT BACKFLOW BETWEEN

POTABLE AND NON-POTABLE WATER SYSTEMS

This amendment, if adopted, would create a new Chapter of

he General Ordinances of the City of Rochester, to be know

as Chapter 18 of the General Ordinances of the City of Roches

ter to be entitled "Regulation of Cross-Connections to Preven Back-Flow Between Potable and Non-Potable Water Sys

ems", and would adopt, in its stead, a new comprehensive

oning ordinance applicable throughout the City of Roches

The new Chapter 18, would, among other things:

(a) outline the legal and practical purposes related to the en

(b) establish a system of administration with respect to the

cross-connection program created by the new Chapter 18; (c) establish a set of definitions for terms used in the new

Chapter 18 for use in connection with the administration, inter

rocedures relative to such matters administration, compli-

nce monitoring, hazard level assessments and other matters

make numerous significant additional changes to the that ill be applicable to properties in the City of Rochester with re-

gard to their the connections between their potable and non

copies of the proposed ordinance amendment entitle

"Amendment to Ordinances Creating Chapter 18 of the General Ordinances of the City of Rochester Entitled Regulation of

cross-Connections to Prevent Backflow Between Potable and

Non-Potable Water Systems", including the provisions of the proposed new Chapter 18 of the General Ordinances of the

The PUBLIC HEARING on the above matter will be conducte

by the Codes and Ordinances Committee of the Rocheste

Citizens are invited to attend the PUBLIC HEARING and to as

ontact the City Clerk's Office, (tel. 332-2130) on or before

Kelly Walter

Rochester City Clerk

News Reporter

Foster's Daily Democrat, an award win-

ning, hard-working, small daily newspa-

per based in Dover, N.H., is taking appli-

cations for a full-time reporter. College

degree in journalism or commensurate

professional experience preferred.

Entry-level candidates encouraged, par-

ticularly those with experience in social

media and web reporting. Send resume

and cover letter to Rodney G. Doherty,

Executive Editor, Foster's Daily Demo-

crat, 150 Venture Drive, Dover, NH

Geo. J. Foster & Co., Inc.

1873

George J. Foster & Co., Inc.

is looking to fill

the following positions:

Production

Inserting Machine

Operators

No Experience Necessary

Hours Will Vary:

Sunday, Monday, & Tuesday

Day & Evening

Shifts

Average 20 Hours

Per Week

Applications

Now Being Accepted

PLEASE APPLY AT

150 VENTURE DRIVE

Enterprise Park off

Sixth Street, Dover

03820. e-mail: rdoherty@fosters.com.

uestions or otherwise speak on the proposal

city Council in the City Hall, City Council Chambers, 31 Wake

City of Rochester are available in the City Clerk's Office

cross-connection - backflow prevention pro

pretation, and enforcement of such new Chapter 18;
(d) create a permit system for backflow prevention device

(e) establish new standards, requirements, regulations

ram created by the new Chapter 18

Section

AIR CONDITIONERS (4)

LG 6000BTU, Energy

Star. Low profile, used

ARMOIRE 45"WX62"H

SCANDINAVIAN 1800s

antique light pine \$880

BACKHOE/LOADER

6x \$150 343-8285

343-8285

Better

Stove

343-8285

BLOOD

Articles for Sale

Employment DRAWER Fireproof Filing Cabinet. \$400.00. Call 603-755-3787

Public Notice

Household Steward

Year round, full time opportunity in NH seacoast area for professional who has worked in a recent cleaning capacity for a family. Responsibilities include house cleaning, sup-The Newington Supervisors of the Checklist will hold a Public Session on Saturday, March 2, 2013 from 11:00-11:30 <u>a.m.</u> at Town Hall for ply stocking, laundry, occasional food preparation of light meals, and running errands Must be computer savvy with

BUCKET 7' WIDE good Mac experience. This position shape may involve occasional inter-603-905-9595 national travel as well as a BED QUEEN 11" thick rare weekend. 30k, outstand-Pillowtop mattress & box. New. Cost \$799 ing benefits package, 10 paid holidays and more. Please sell \$299. 603-427-2001 submit resume and work reerences in Word format to BELL 2 BIKE carrier jobs@allstaffcorp.com 1/4 hitch \$20.00. Call LITTLEFIELD 603-905-9595

CRETE FLOORS seekconcrete floor fining isher. Experience required. Pay commensurate with experience, quired. (207)646-5500

SERVICE STATION attendant needed part time . Monday thru Friday. Great job for someone reliable an interest in automobiles. Apply in person: Bob's Gulf. 211 Central BOOK

152 Medical-Dental-Nursing

Exciting opportunity available for a Lifestyle Educator n our busy Ob-Gyn practice

Enthusiasm for healthy living & desire to change lives, along with excellent patient educa tion and independent work skills are required for this poquired. If this describes you, please forward your resume Dover Women's Health, P.A.

700 Central Ave. Dover NH 03820 Fax: (603) 740-4650 or email:

LNA Training Dover

Educational Services LLC 603.660.9040 www.MedProEducational.net

*

Help Wanted

CNA/LNA Training Day, evening & weekend classes all held in Do-DOVER Moving Sale, funiture, tools, sports equipment 603-866ver! Graduate in just 5-8 weeks! (603) 647-2174. equipment www.LNAHealthCareers

238 Dogs-Cats/Birds/Pets

AKC PUG PUPPIES, males, with vet certifi-cate \$800 each. Call 603-332-2824

Merchandise

310 Articles for Sale

12 MJ HUMMEL Collector Plates "Little Companions" New \$150.

chal826@hotmail.com 1/2 Ton Utility Trailer, pickup frame, 4x8x4 plywood chasis, 18' wheels \$95 343-8285

16.5' CANOE. GREAT Canadian fiber padded, back rests, paddles \$200. 343-8285

2008 Maytag washer & dryer. white in color Excellent condition \$550/ offer. 603-343-6918

2 LIFT CHAIRS, like new condition, Asking \$350 each. or best reasona-ble offer, 603-351-8334 Help Wanted

NORTH COUNTRY INDEPENDENT LIVING, INC. "CHANGING LIVES, BUILDING FUTURES"

A community based provider of residential services and supports for individuals to lead a high quality lifestyle accessing the community and developing life skills. NCIL excels at specialized services and providing

146

Minimum requirements include a High School Diploma or equivalent, valid driver's license. Experience and creativity with special needs a plus. Must be able to pass

Stacey Cushing 9 Strafford Road, Barrington, NH 03825 603-335-8696, 603-335-8314 (f) • scushing@ncilnh.com

Articles for Sale

PHONE: VTECH 5.8GHZ CORDLESS digital answering machine, adaptor. \$7. 659-6621

310

10,000 miles. Set of 4. \$100. 603-433-6525 DOVER 2 BEDROOM Sears 9 horsepower

blower, electric start, deluxe cab cover. \$600 603-335-3933 SEARS 9H.P. 28" 6

\$250.00 Call 603-755-3787 SNOWMOBILE TRAIL-ER.... \$100 OR best of-

> Trimmer RedMax BCZ2660TS Speed-Feed, Used

'N Bens Wood with blower CLINING stack, brick liner \$300 \$100.00. 603-755-9938

PRESSURE MONITOR Homedics BPA-450, new \$20. 603-659-6621

SHAKESPEARE model TROY-BILT 5215, whip intact, \$10, Washer, 6.75 HP Briggs 603-659-6621 343-8285 CASES

6'Hx3'W. Solid wood, 1 with glass paine doors \$165, 343-8285

BOOK CASE. SOLID wood, walnut stain, solid beadboard back 4'Hx 3'W. \$85 343-8285 **BRAND NEW Englander**

wood stove \$500.00 in excellent condition once, \$50. 743-3230 BRAND NEW still in box

tailgate for F-150 Ford 84'-86'. (603)755-3787 China Hutch Buffet 71"Wx79"Hx24"D.

Heavy Pine, beadboard, Glass \$985 343-8285 "COZY" 40,000 BTU Direct vent propane wall furnance, never used.

\$700. (603)755-3787 CRAFTSMAN 1 1/2 HP Wood Workers Router

\$30. 343-8285 CADET Snowblower 26" pull &

electric start, 2 hours of use \$749, 343-8285

DAYTON 12V 8500LB winch \$425.00 or best offer. 603-905-9595

East Lake love seat, matching chair, beige, casters, all excellent, casters, all \$600.652-4549

EXERCISE EQ.. ABLOUNGER IN excellent condition, \$50 or

best offer. 6036795966 **FLOWER** MICROFLEUR 9"X9" like new, manual. \$20.

Call 603-659-6621 GAS STOVE, classic series, new heating element, \$325 Call 603-

CARINETS KITCHEN Glazed cherry wood. New. Cost \$8000. sell

\$1899. 603-427-2001 LP Gas Soapstone Stove by Woodstock Co. 28"Hx30"Wx24"D

\$985 343-8285 MCAFEE TOTAL PRO-TECTION 2013 for 3 PCs,new in box, protec-

tion. \$25 603-659-6621 New Portable Gas Gen erator 3,500 watts with

48"x66" elliptical, 18" leaf, 4 Windsor back \$345. 343-8285

\$425, 841-6406

<u>Residential Advisors</u> you are creative, enjoy being involved in the

interest in rehabilitation, we would appreciate speaking

a NH Criminal Background Check. If interested please

NCIL is an Equal Opportunity Employer NORTH COUNTRY INDEPENDENT LIVING

Mail:

Fax:

PIRELLI P4 TIRES P185/65 R15 88T About

speed electric snowblower \$600. Call

fer. Call 6036795966

hour. \$275. 343-8285 TAN MICROFIBER RE-

melnjay@metrocast.net

TOPEAK SUSPENSION CHILD Carrier Bike Seat \$100 Nice condition. chal826@hotmail.com BOAT ANTENNA: 34'

> Stratton like new. \$200. USED propane kitchen

stoves & hotwater heaters. Call 603-755-3787 YAMAHA professional

keyboard psr 2100 home use only like new \$600. 603-742-3495

Firewood FIREWOOD

01A1 \$290/Cord, new \$250/Cold, flew \$210. We deliver every-where. We give more wood for your \$\$\$'s. Fast dependable service 24/7!Fuel assistance accepted. 978-5012

FIREWOOD: GREEN & 1 YEAR seasoned. Tom Tremblay 603-859-3888 FIREWOOD Seasoned

1 year. \$250/cord. Mult cord discount. 603-817-7270.

WANTED

STAIRLIFTS

Apartments curved. 603-343-3226. Prices starting at Accepting applications

straight.

Real Estate

Cocheco River

Estates A 55+ Community in Rochester, NH Beautiful 3 bedroom,

2 bath, stone fireplace in living room, central AC, screened room with glass, and shed \$119,900.00

Beautiful larger home on corner lot, 3 bedroom, 2 bath, fireplace in living room, central AC, screened room with glass, nice landscaping, and shed.

Larger 3 bedroom, 2 bath home w/some unique features, central AC, screened room with glass, and shed \$86,900.00

\$107,900.00

2 bath, central AC shed. \$89,000.00 Nice 3 bedroom, 2 bath, eat-in kitchen,

28x48 3 bedroom

central AC, screened room with glass and shed. **\$59,900.00** Renovated inside, 28x70 with 3 bedrooms

2 baths, family room,

screen room, shed double lot. \$129,900.00 New 28x52, 3 bedroom, 2 baths, black appliance package, central AC, deck, and

shed. \$128,500.00

Toy's Manufactured Housing Inc. 15 Nashoba Drive Rochester, NH

603•335•2276 ww.toysmanufacture housing.com

BERWICK, 1 bedroom

heated \$950. Or 2 bedroom heated for \$1200. (603) 312-8106

BERWICK newly updated 2 bedroom, 2 bath duplex, hookups. \$975 Reference 207-252-1447

DOVER 1,2,3 bedrooms \$825-\$1050 heat & hot water included. No Pets. Call 603-742-8282

604 Apartments - Unfurnished

\$795/mo. - 332-8444

Professionally managed by

JCM Management Co., Inc. www.countrybrookapartments.com

DOVER FAIRFIELD GARDENS

√ 1 & 2 Bedroom Apartments
√ 1 bedroom from \$665

✓ 2 bedrooms from \$715 ✓ Wall to Wall Carpeting ✓ Pool, Tennis Courts ✓ Laundry Facilities

Open Mon.-Fri., 10-5 603-743-4141

DOVER, large 1 bed-

room in town, parking,

quiet, no smoking/pets.

DOVER Large clean 2 bedroom, 1st floor,

hookups, shed, parking for 1 vehicle. \$800 +

DOVER

large one bedroom on

top floor of victorian,

very light, lots of stor-

603-749-0555

www.purcellmanagement.com

→ DOVER ←

The Meadows At Dover

1-603-743-3131

OLDE MADBURY LANE

APARTMENTS

DOVER

2 Bedroom & Studio

\$695.

603-742-2221

ROCHESTER 1 & 2 bed-

room apartments. On site laundry, \$150-\$170

week + security & utilities, no pets. 781-4847.

ROCHESTER 1 Bed-

room, Downtown, \$600 per month. Home1st 603-793-1175

ROCHESTER 1 bed-room with heat/hot wa-

ter, \$625, cozy, private, clean, parking. 335-0993

ROCHESTER 1st floor, 1

bedroom, yard, new hardwood floors/ paint,

ROCHESTER 2 bed-

room, hookups. \$895-\$995. Heat & hot water

ROCHESTER 3 BED

ROOM apartment \$1150

a month + utilities. On site laundry. No pets, no smoking. 781-4847.

Rochester, Come see all

our changes! renovated

2 bedroom starting at \$750+. 603-330-3352

ROCHESTER

Country Setting

So/Field Apartments

1 & 2 bedroom units.

Heat included.

Starting at \$700 **603-335-3612**

→ ROCHESTER ←

NORTHGATE APARTMENTS

Area's largest apartments

laundry on each floor

Hot water included.

1 bedroom - \$650

\$575. 603-264-2687

included. 742-5300.

smoking.

age, oil heat. \$775+.

for 1 vehicle. \$800 utilities. 603-817-3028.

laundry

✓ Hot water included

\$780 plus utilities.

603-591-1912

downtown.

Five easy ways to place your ad!

Online: go to fosters.com, click on classifieds, and select "place a classified ad" from the drop down menu

Email: fddads@fosters.com - checked Monday-Friday

(603) 740-3460 - checked Monday- Friday

Phone: 1-866-414-7355 - representatives available

Monday - Friday 8:00 a.m. to 5:00 p.m.

- available 24/7

8:00 a.m.-5:00 p.m.

8:00 a.m.-5:00 p.m.

ROCHESTER 4 room, 2 COUNTRY BROOK Spacious Sparkling 2 bedroom apts. situated in a lovely country setting cross from the Rochester Country Clu

bedroom condo. Gas heat, swimming pool. \$925/month + utiliti Prescott Agency. 603-742-1331

pet friendly \$1395+. Call 742-5300.

ROCHESTER 2 BED-ROOM duplex, hookups, yard, \$900 + utilities. No pets, no smok-

NORTHWOOD newly renovated 3 bedroom mobile with walk out cellar, large fenced in yard. Beach rights to

2 bedroom/2 bath \$875/ month. No dogs no smoking. Section 8 smoking. Section okay. Call 332-6589

room in private house. \$600. 207-318-3530.

Rooms - Furnished quiet. Laundry on site.

New Residents Special 1 bedroom 1 bath @ \$775 2 bedrooms starting at \$835 Loaded with amenities ~On Site Laundromat~ On U.N.H. Bus Line Residence Call 603-755-3411. MILTON A very nice 2

bedroom townhouse, \$800 + utilities, security. No dogs. 603-335-3039 MILTON, wanted for Sunny z MILTON, Good Tenant \$795. (978)549-0220 ******

MILTON large 1 bedroom, handicap access yard, country area. No smoking/pets. 652-4474

(603)948-0576

A1 SNOW PLOWING & SANDING Milton, Farmington, Rochester, Bar-rington, 603-978-5012

PROFESSIONAL Roof Shoveling. Snow removed from roofs, moved

roof/walkways, Insured. Call Tom Delong & Daughter (603)396-1624.

Transportation

(603) 926-0556

Autos for Sale

condition, remote start security system, \$5,600 603-742-0617 larrie upton@hotmail.com 915 Four Wheel Drive

2003 DODGE RAM HD. Fisher plow, 50K miles, lots of new stuff. \$11,500 or best offer.

(603)285-2205

80K, recent tires & brakes, just inspected.

\$5500. (603)743-3230 944 Wanted-Automotive

1 ALL UNWANTED Cars

Daily 10am-5pr 603-332-0500 ROLLINSFORD 2 to 3

heat, parking, security & references. 312-5551 SANFORD: 28 Jackson St. 2 bedroom, 1 bath apartment. \$625/month utilities. Pets wel-

come. Call 1-877-402-7077, ext. 398 SOMERSWORTH

bedroom, \$795+. Washer/dryer hookups. No dogs. 742-5300. SOMERSWORTH 2 bed-

room, off street parking, \$775 with hot water. No dogs. 603-867-4093 SOMERSWORTH 3 bedroom, duplex, hookups garage optional, \$1175,

extended warranty. 800 miles. showroom condition with cover. \$7800.

cubic inch, 20k miles -10K on rebuilt engine, nice bike, \$8000. Call (603)285-2205

Call (603) 743-3230

Foster's Daily Democrat, Attention: Classified Advertising, 150 Venture Dr., Dover, NH 03820

Rochester heat smart townhouse, 3 bedroom

Duplexes - Multiplexes

heat smart energy star rated. \$995-\$1095. No dogs. 742-5300

ing. 781-4847. 636

Northwood Lake. \$1100 + utilities. Available 4/1. Loren (603)817-3028 ROCHESTER spacious

STRAFFORD Bow Lake, Huge, quiet, beautiful

LARGE ROOMS, air, full kitchens, utilities included. Affordable, clean & Convenience store / restaurant on site. Strafford Inn / Roches-

Services-Repairs

INTERSTATE ROOFING **ROOF SHOVELING FULLY INSURED** 20 years experience Free estimates

Snow Plowing

Snow Removal

decks, etc. 343-6918

Auto Agencies

PAY HERE

www.556auto.com

2001 HONDA Civic EX 72k miles, 35 mpg, green, loaded, excellent

1998 FORD F150 4x4:

& Trucks. Highest Price Paid. Free Towing. Call Cass Towing 692-4884 **PAYING \$350 & Up** For your unwanted vehicles

Buying all types of scrap metal **Lambert's Auto & Truck** 603-948-1900

Recreational

2000H-D LOW RIDER 88

2008 YAMAHA FZ1 1000

2 bedroom -Starting at \$725 to \$825 bedrooms, 2nd & 3rd floor, \$995 with oil Free pick-up service. Call for our scale prices.

Appendix C Comments Received During the Public Comment Period and Navy Responses

1	
2	
3	PUBLIC HEARING FOR THE
4	PROPOSED PLAN FOR OPERABLE UNIT 4
5	
6	
7	
8	
9	at
10	Kittery Municipal Building
11	200 Rogers Road
12	Kittery, Maine
13	
14	
15	
16	on
17	Wednesday, March 13, 2013
18	at 8:27 p.m.
19	
20	
21	
22	Court Reporter:
23	Karen D. Pomeroy, RDR, CRR
24	

Good evening. My name is 1 MS. MIDDLETON: 2 Liz Middleton on behalf of the Navy. I'd like to welcome you to the public hearing for 3 4 the Portsmouth Naval Shipyard Operable Unit 4 Proposed Plan. 5 6 We're here tonight to accept formal comments on 7 the Operable Unit 4 Proposed Plan. So please feel free to use the podium to provide 8 9 your comments, and please state your name prior to 10 providing those comments. 11 Thank you. MR. BOGEN: Good evening. For the record, my name 12 13 is Doug Bogen. I'm the director of Seacoast Anti-Pollution League. I live in Barrington, 14 15 New Hampshire, and I'll provide just some general 16 comments about the proposed plan; and then our TAG 17 Consultant, Carolyn Lepage, will follow up with some 18 more detailed comments in a minute. 19 SAPL is generally pleased with this proposal. 20 think that it -- it does clean up the offshore. That 21 is certainly our main concern. I recall from, you 22 know, ten or more, 15 years ago that this was one of 23 the biggest concerns of the public. 24 We had some fairly lengthy RAB meetings, long

discussions about the offshore ecological impacts, and so it's great.

You know, obviously it's been a long time coming and we would have liked to have seen it done sooner, but we understand that you had to address the onshore sources and it would take some time to get to this; but again we're glad that it's finally being addressed and that materials are being removed, that we can really call it a cleanup.

We do have some specific concerns again, though, that Carolyn will raise in more detail.

One of our general concerns I want to mention is that we -- as we've said at other hearings and other venues, that we think the Navy needs to give more attention to the issue of climate change, climate disruption, global warming, however you want to call it, and specifically a sea level change and the potential impacts.

There's been a lot of research in the last few years -- again, Carolyn will mention a little more detail on that -- but we think that it really behooves the Navy to give more attention to that and specifically obviously with the offshore, the interfacing of the onshore and the offshore, that's

where the wave meets the shore, and with sea level rising, storm surges, and things that we're certainly much more attentive to now than we were even just a year ago, we need to be giving more attention to that.

I would also like to make some comments more about the process and access to documents. At the risk of some redundancy from our previous RAB meeting, I want to state for the record that SAPL is not pleased with the recent changes in policy from the Navy over access to documents.

We don't feel that we had as much time to review the PRAP specifically and previous documents related to this as we would have if we had been under the previous routine of having immediate access and access to written documents as well as technical meetings, being able to discuss these issues face to face.

So we do want to register that concern that -going forward, that we can rectify the situation and
that we not have the situation we have now.

We understand there's more time to review and comment on this specific PRAP, but we do feel that that has been a problem; and we'd like to see some resolution to it.

So I think that's all I'll say at this point; but

I'd like to turn it over to Carolyn Lepage, our TAG 1 2 consultant. 3 MS. LEPAGE: My name is Carolyn Lepage. I'm a Maine certified geologist from Auburn, 4 5 Maine; and I serve under contract as the technical advisor to the Seacoast Anti-Pollution League, also 6 known as SAPL. The following comments regarding the February 2013 8 9 proposed plan for Operable Unit 4 are presented on 10 behalf of SAPL. Support for the preferred remedy. SAPL supports 11 the remediation of contaminated sediments in the areas 12 13 offshore of the Portsmouth Naval Shipyard as described 14 in the February 2013 Proposed Plan for Operable Unit 4. 15 The removal of toxins at locations MS-01, 03, 04, 16 and 12 should improve the environmental quality 17 offshore in the long run. 18 However, while SAPL supports the removal of contaminated sediments from the four locations, SAPL 19 20 has questions and concerns about the Navy's preferred 21 alternative as follows: No. 1, confirmation sampling is crucial. 22 The PRAP states that once the final remedies are 23 24 implemented for OU4, the interim offshore monitoring

will be discontinued.

2.2

Since there will no longer be any monitoring program in place, it is crucial that confirmation sampling, performed in conjunction with removal action, be sufficient to demonstrate that all contamination that exceeds clean-up goals has been removed at each of the four locations.

No. 2, potential for offshore contamination resulting from onshore actions.

Given that the interim offshore monitoring program will no longer be conducted, what contingency plan does the Navy have for addressing contamination of offshore areas caused by activities conducted onshore?

For example, page 3 of the PRAP states that the excavation of contaminated soils adjacent to Jamaica Cove resulted in the release of contaminants to sediment offshore of Jamaica Cove.

How will the Navy address potential impact to ecological receptors in offshore areas adjacent to remedial or similar activities being conducted onshore?

No. 3, maintaining the integrity of shoreline structures.

The introduction section of the PRAP describes how the installation of erosion control structures at

several sites has resulted in the reduction of contaminant concentrations or prevention of contaminated sediment accumulation in the offshore. Specifically, OU7, OU3, and OU2. Therefore, these structures are integral to the Navy's proposed remedy for OU4 as they prevent erosion and migration of soil contamination from the sites into the adjacent river.

SAPL believes that frequent inspection and evaluation will be needed to ensure that any structural deterioration is fixed before failure occurs.

What are the Navy's plans for inspection and repairs?

How will rising sea level be factored into these plans?

Should repairs or replacement become necessary, how will the Navy prevent erosion and migration of site soils and contamination into the offshore?

No. 4, sea level rise.

SAPL again expresses its concern into the -- with the effect of rising sea level on the contamination located at various sites around the shipyard as well as on the remedial measures taken to clean up these sites.

A recent report from Carbon Solutions New England at the University of New Hampshire entitled, Climate

Change in the Piscataqua, slash, Great Bay Region,
Past, Present, and Future concludes that, quote, we can
expect the 100-year flood height to increase several
feet over the next 90 years, end quote, which will
result in more severe flooding in coastal New Hampshire
in the future.

The effect of such an increase on the Great Bay area can be observed at a website developed by Princeton University climate scientists sealevel.climatecentral.org/surgingseas; and I have the complete website -- the complete link if anybody wants it.

Rising sea level will alter current groundwater/surface water systems and affect the stability of shoreline structures. The remedy for OU4 relies on the integrity of shoreline structures used to maintain stability along the shoreline slopes and to prevent erosion and further migration of waste and contaminated soil that will remain at sites onshore.

How was rising sea level considered in the development of potential remedies for OU4 and in the selection of the Navy's preferred alternative?

What are the effects of rising sea level and increasing frequency and/or severity of storm events on

the proposed remedy and how have they been evaluated?

What range of sea level change was considered?

What are the potential future impacts to the

Navy's preferred alternative as sea level rises?

How has the Navy planned to deal with potential future impacts?

No. 5, impact of shipyard closure.

What will happen if the shipyard closes and the Navy is no longer on the property to keep an eye on various onshore sites that could potentially impact OU4?

Recent experience at another Navy facility in Maine that recently closed has shown that security measures for even the most dangerous sites will no longer be maintained at a high level once a base closes.

In the event of closure, how will the Navy ensure that there are no adverse impacts on OU4 offshore areas as a result of activities or actions on the former shipyard property?

For example, how will the integrity of shoreline erosion control measures such as those cited in the PRAP for OU2, OU3, and OU7 be maintained to prevent migration of contaminants to the offshore?

1	No. 6, new contaminants or sources of
2	contamination.
3	What contingencies or plans does the Navy have for
4	possible future offshore monitoring needs for the
5	following situations:
6	A, detection of, quote, emergent contaminants, end
7	quote, or other, quote, new, end quote, contaminants at
8	either onshore or offshore sites; B, ongoing
9	investigations reveal new potential source or sources
10	of contamination that could affect the offshore
11	environment?
12	Thank you.
13	MS. MIDDLETON: Are there any other comments?
14	(No response.)
15	MS. MIDDLETON: If not, then thank you for joining
16	us tonight.
17	(Conclusion of proceedings at 8:39 p.m. this date.)
18	
19	
20	
21	
22	
23	
24	

1	CERTIFICATE
2	I, Karen D. Pomeroy, a Registered Diplomate Reporter
3	and Certified Realtime Reporter, do hereby certify that
4	within transcription is a true and accurate record, to the
5	best of my knowledge, skills and ability, of the
6	proceedings.
7	I further certify that I am not related to any of the
8	parties in this matter by blood or marriage and that I am in
9	no way interested in the outcome of this matter.
10	IN WITNESS WHEREOF, I have hereunto set my hand and
11	affixed my seal of office this 15th day of March, 2013.
12	
13	Haren S Toming
14	Karen D. Pomeroy, RDR, CRR
15	-
16	
17	
18	
19	
20	SUBSCRIBED AND SWORN TO before me this 25th day of
21	March, A.D., 2013
22	COFICIAL SEAL LARA DAVIS HOTANA PARALE PATA OF LINOS HOTANA PARALE PATA OF LINOS HOTANA PARALE PATA OF LINOS
23	MOTOR POWER STATE OF LINES IN THE STATE OF L
24	NOTARY PUBLIC

Lepage Environmental Services, Inc.

P. O. Box 1195 • Auburn, Maine • 04211-1195 • 207-777-1049

March 27, 2011

Ms. Danna Eddy Public Affairs Office (Code 100PAO) Portsmouth Naval Shipyard Portsmouth, NH 03804-5000

Subject:

February 2013 Proposed Plan for Operable Unit 4

Dear Ms. Eddy:

This letter is submitted as requested by and on behalf of the Seacoast Anti-Pollution League (SAPL) regarding the February 2013 *Proposed Plan for Operable Unit 4, Portsmouth Naval Shipyard, Kittery, Maine* (the Proposed Plan). Most of the comments below reflect the oral comments presented on behalf of, and with input from, SAPL members at the March 13, 2013, Public Hearing held at the Kittery Town Hall.

Support for the Preferred Remedy

SAPL supports the remediation of contaminated sediments in areas offshore of the Portsmouth Naval Shipyard as described in the February 2013 *Proposed Plan for Operable Unit 4*. The removal of toxics at locations MS-01, 03, 04, and 12 should improve the environmental quality off shore in the long run. However, while SAPL supports the removal of contaminated sediments from the four locations, SAPL has questions and concerns about the Navy's preferred alternative as follows:

Confirmation Sampling is Crucial

The Proposed Plan states that once the final remedies are implemented for OU4, the interim offshore monitoring will be discontinued. Since there will no longer be any monitoring program in place, it is crucial that confirmation sampling performed in conjunction with the removal action be sufficient to demonstrated that <u>all</u> contamination that exceeds cleanup goals has been removed at each of the four locations.

Maintaining the Integrity of Shoreline Structures

The Introduction section of the Proposed Plan describes how the installation of erosion control structures at several sites has resulted in the reduction of contaminant concentrations or prevention of contaminated-sediment accumulation in the offshore. [Site 32 (OU7), OU3, OU2] Therefore, these structures are integral to the Navy's proposed remedy for OU4 as they prevent erosion and migration of soil and contamination from the sites into the adjacent river. SAPL believes that frequent inspection and evaluation will be needed to ensure that any structural deterioration is fixed before failure occurs. What are the Navy's plans for inspections and repairs? How will rising sea level be factored into the plans? Should repairs or replacement become necessary, how will the Navy prevent erosion and migration of site soils and contamination into the offshore?

Potential for Offshore Contamination Resulting From Onshore Actions

The Navy is proposing to remediate four offshore locations, but not ten other locations based on the results of the offshore monitoring conducted from 1999 through 2011. Remedial efforts and other actions conducted on-shore, such is no longer discharging via the OU5 industrial waste outfalls and improving shoreline erosion control structures at OU2, have also benefited the offshore environment. However, on-shore activities in the future may spread contamination to offshore areas again. For example, page 3 of the Proposed Plan states that the excavation of contaminated soils adjacent to Jamaica Cove resulted in the release of contaminants to sediment offshore of Jamaica Cove.

Given that the interim offshore monitoring program will no longer be conducted, what contingency plan does the Navy have for addressing contamination of offshore areas caused by activities conducted on-shore? How will the Navy address potential impacts to ecological receptors in offshore areas adjacent to remedial or other activities being conducted on-shore?

Sea Level Rise

SAPL again expresses its concern with the effect of rising sea level on the contamination located at various sites around the Shipyard, as well as on the remedial measures taken to clean up the sites. A recent report from Carbon Solutions New England at the University of New Hampshire, entitled "Climate Change in the Piscataqua/Great Bay Region: Past, Present, and Future" concludes that "we can expect the 100-year flood height to increase several feet over the next 90 years", which will result in more severe flooding in coastal New Hampshire in the future. The effect of such an increase on the Great Bay area can be observed at a website developed by Princeton University climate scientists, sealevel.climatecentral.org/surgingseas.

[http://sealevel.climatecentral.org/surgingseas/place/states/NH#center=14/43.0761/-70.7407&surge=3&show=cities]

Rising sea level will alter the current groundwater/surface water system and affect the stability of shoreline structures. The remedy for OU4 relies on the integrity of shoreline structures to maintain stability along the shoreline slopes and to prevent erosion and further migration of the waste and contaminated soil that will remain at sites on shore.

How was rising sea level considered in the development of potential remedies for OU4, and in the selection of the Navy's preferred alternative? What are the effects of rising sea level and increasing frequency and/or severity of storm events on the proposed remedy and how have they been evaluated? What range of sea-level change was considered? What are the potential future impacts to the Navy's preferred alternative as sea level rises? How has the Navy planned to deal with the potential future impacts?

Impact of Shipyard Closure

What will happen if the Shipyard closes and the Navy is no longer on the property to keep an eye on various on-shore sites that could potentially impact OU4? Recent experience at another Navy facility in Maine that recently closed has shown that security measures for even the most dangerous sites will no longer be maintained at a high level once a base closes. In the event of closure, how will the Navy ensure that there are no adverse impacts on OU4 offshore areas as a result of activities or actions on the former Shipyard property? For example, how will the integrity of shoreline erosion control measures (such as those cited in the Proposed Plan for OU2, OU3, and OU7) be maintained to prevent migration of contaminants to the offshore?

New Contaminants or Sources of Contamination

What contingencies or plans does the Navy have for possible future offshore monitoring needs for the following situations:

- Detection of "emerging contaminants", or other 'new' contaminants at either on- or offshore sites.
- On-going investigations reveal new potential source(s) of contamination that could affect the off-shore environment.

Please do not hesitate to contact me if you have any questions.

Sincerely,

Carolyn A. Lepage, C.G. & P.G

President

State of Maine Certified Geologist No. GE20

cc: Doug Bogen, SAPL

Elizabeth Middleton, NAVFAC MIDLANT

Iver McLeod, MEDEP

Matthew Audet, EPA

Deborah Cohen, TetraTech

TABLE C-1 RESPONSES TO COMMENTS RECEIVED DURING THE PUBLIC COMMENT PERIOD ON THE PROPOSED PLAN FOR OPERABLE UNIT 4, PORTSMOUTH NAVAL SHIPYARD, KITTERY, MAINE

Oral comments during the March 13, 2013 public hearing and written comments dated March 27, 2013, were received from one community organization, Seacoast Anti-Pollution League (SAPL), on the February 2013 Proposed Plan for Operable Unit (OU) 4. The SAPL representative, who is also a Restoration Advisory Board (RAB) member, and SAPL's Technical Assistance Grant (TAG) Consultant provided comments at the public hearing. No changes to the remedy, as originally identified in the Proposed Plan, were necessary based on comments received during the public comment period. A summary of the comments received and the Navy's responses to these comments are provided in the table herein.

Summary of Comments Received during the Public Comment Period and Navy Responses								
Question/Comment	Navy Response							
SAPL indicated support for removal of contaminated sediment from MS-01, MS-03, MS-04, and MS-12.	Comment noted.							
MS-04, and MS-12. SAPL indicated that the Navy needs to give more attention to the issue of climate change, specifically sea level rising. SAPL is concerned with the effect of rising sea level on the offshore area and the interface between onshore and offshore area and potential impact to the stability of shoreline structures. SAPL asked how sea level was considered in the development and selection of remedies for OU4, what the potential future impacts may be to the Navy's preferred remedy as sea level rises, and how the Navy will address potential future impacts from sea level rise at OU4.	Sea level rise does not affect OU4 because sediment contamination at OU4 is within the portion of the offshore below high tide. Change in sea level change also would not affect OU4 in the future because OU4 contamination will be removed as part of the remedy. Therefore, no consideration was given to potential sea level change as part of OU4. OU4 is the nearshore offshore area adjacent to PNS that may have been affected by past releases from onshore Installation Restoration (IR) Program sites. The potential sources of contamination to the offshore from these IR Program sites have been controlled through various remedial and removal actions. Future potential for migration of contamination from onshore IR Program sites to the offshore area is being addressed as part of the specific onshore IR Program sites (or OUs). As the Navy has indicated in previous responses to similar questions regarding sea level rise, evaluations of the potential migration of contamination from onshore IR Program site soils to groundwater have been conducted. The evaluations assumed worst-case conditions, assuming that the highest contamination was directly in contact with groundwater and was near the shoreline. Therefore, changes in sea level would not change the conclusions of the							
	evaluation. In addition, five-year reviews will be required for sites where contamination remains in excess of levels that allow for unlimited use and unrestricted exposure to ensure that the remedy remains protective of human health and the environment in the future. Changes in site conditions that could affect the protectiveness of the remedy are evaluated as part of the five-year review process.							
	Please also see the Navy's response to SAPL's comment regarding future potential migration of contamination from onshore to offshore.							

Summary of Comments Bessives	during the Public Comment Period and New Pernance
Question/Comment	d during the Public Comment Period and Navy Responses Navy Response
SAPL commented on the access to documents and time for review of the Proposed Plan and previous documents.	The Navy provided a 30-day public comment period in accordance with the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 CFR § 300.430(f)(3)(c)), which indicates that a reasonable opportunity of not less than 30 calendar days must be provided for submission of written and oral comments on the Proposed Plan and the supporting analysis and information located in the Information Repository.
	The public comment period on the Proposed Plan for OU4 was held from February 27 to March 28, 2013. Before the start of the public comment period, the Proposed Plan for OU4 and documents supporting the Proposed Plan were made available in the Information Repository at Rice Public Library in Kittery, Maine and Portsmouth Public Library in Portsmouth, New Hampshire. The Proposed Plan also provides information to access the documents through the Navy's public website.
	In addition, the Navy presented the draft Proposed Plan at the December 2012 RAB meeting, where SAPL and SAPL's TAG Consultant and other people attending the RAB meeting had an opportunity to hear about the Navy's draft plans and to ask questions about the plan. Documents supporting the Proposed Plan, including the Feasibility Study (FS) Report and documents related to the Interim Offshore Monitoring Program were also presented at RAB meetings.
SAPL indicated that confirmation sampling was necessary to demonstrate that contamination has been removed at the four monitoring stations.	Sampling is included in the preferred alternatives, as discussed in the description on page 16 of the Proposed Plan. The Navy will conduct sampling to make sure that contaminated sediment is removed such that the RAO and cleanup levels are met. The appropriate remedial action documents will specify the requirements for sampling at the four monitoring stations.

Summary of Comments Received during the Public Comment Period and Navy Responses Question/Comment Navy Response

SAPL indicated concern for the potential for offshore contamination resulting from onshore actions and what contingency plans the Navy has to address this potential contamination.

Potential impacts to the offshore area from onshore remedial actions are addressed as part of the specific onshore remedies. The remedial action documents (e.g., design and/or work plan) are developed to specify the activities that are necessary to provide adequate protection to human health and the environment. Generally the Remedial Action Work Plan (RAWP) discusses the specific activities that will be conducted to prevent contaminant migration, including erosion and sedimentation, during remedial action construction activities and site restoration requirements. Contingency action, as needed, would be discussed in the RAWP.

Completion of the remedial action is documented in a report that discusses the specific activities conducted and that the remedial action objectives (RAOs) have been met. The five-year review subsequent to the completion of construction also evaluates whether the remedy has met the RAOs and whether the implemented remedy is protective of human health and the environment.

For remedies that require long-term management, the long-term management plan provides the necessary activities for inspection and routine maintenance. Non-routine maintenance that is identified based on the inspections would require a separate work plan to address the specific activities as part of the maintenance work.

SAPL indicated concern with the long-term integrity of the shoreline stabilization features because there has been past erosion along the shoreline of the sites. SAPL asked what the Navy's plans were for inspection and repair of the structures, how rising sea level will be factored into the plans, and how the Navy will prevent erosion and migration of contamination if repairs or replacement of the structures is necessary. SAPL believes that frequent inspections to identify structural deterioration will be necessary.

Shoreline stabilization features and control of future potential erosion to the offshore are addressed as part of the appropriate onshore IR Program site (or OU). Protection from potential future contaminant migration from these onshore areas is not part of the OU4 remedy. With the removal of the contaminated sediment as part of the OU4 remedy, long-term management, operations and maintenance, and five-year reviews will not be required.

The shoreline structures at OU3 (Site 8), OU2 (Sites 6 and 29), and OU7 (Site 32) were installed as part of remedial or removal actions conducted at these OUs. The specific requirements for inspection and repair of the shoreline structures and necessary actions are or will be provided in the long-term management plans for these OUs. Also, for remedies where contamination remains at concentrations that do not allow for unlimited use and unrestricted exposure, the Navy is required to conduct five-year reviews to assess the continued protectiveness of the remedy. Inspections would identify any significant changes in site conditions, such as significant changes in water levels. In addition, five-year reviews will be required to ensure that the remedy remains protective of human health and the environment in the future. Changes in site conditions that could affect the protectiveness of the remedy are also evaluated as part of the five-year review process. If repairs or replacement become necessary in the future, the Navy will follow all applicable or relevant and appropriate requirements (ARARs) to prevent erosion and migration of site soils and contamination during construction.

Summary of Comments Received during the Public Comment Period and Navy Responses **Question/Comment Navy Response** SAPL asked what happens if the The contaminated sediment will be removed from OU4 to meet the Shipyard closes and the Navy is RAO so that land use controls (LUCs), operation and maintenance no longer on site to inspect (O&M), long-term monitoring, and five-year reviews will not be various onshore sites that could required. Therefore, there are no concerns for OU4 if the Shipyard potentially impact OU4. were to close. For the onshore areas, as provided in previous responses to similar questions from SAPL regarding hypothetical Shipyard closure, the LUCs Remedial Design (LUC RD) indicates procedures pertaining to changes in land use, including property transfer. The deed associated with any future transfer of property would require continued implementation of the LUCs, O&M, and other long-term monitoring requirements. The Navy is responsible for implementing, maintaining, reporting on, and enforcing the LUCs. Although the Navy may later transfer these procedural responsibilities to another party by contract, property transfer agreement, or through other means, the Navy will retain ultimate responsibility for remedy integrity. SAPL asked what contingencies The Navy makes decisions on investigating emerging contaminants based on site-specific conditions. There needs to be a reason to or plans does the Navy have for investigate a specific emerging contaminant. possible future offshore For example, monitoring if new contaminants perfluorinated compounds (PFCs) used in firefighting foams would (e.g., emerging contaminants) or not be investigated at the Shipyard because there is not a historical new sources of contamination that basis for pursuing PFCs at PNS. At the Shipyard, historical filling could affect the offshore and contamination of metals and PAHs are the primary issues for environment are identified. the IR Program sites at PNS. Investigation of OU4 began in the 1980s and since then various investigations and monitoring have been conducted. activities have included sampling across the area offshore of PNS, and not only in areas offshore of IR Program sites. In particular, based on the Interim Offshore Monitoring Program, which has been conducted since 1999, only sediment at MS-01, MS-03, MS-04, and MS-12 was found to have unacceptable chemical concentrations that require remediation. While the Navy does not anticipate finding any new IR Program sites that could impact the offshore, the Navy in

Program sites, if present.

consultation with USEPA would investigate newly identified IR

Appendix D Human Health and Ecological Risk Tables

Appendix D.1

TABLE 3-1 MATRIX OF POTENTIAL HUMAN EXPOSURE PATHWAYS RESULTING FROM EXPOSURES TO OFF-SHORE MEDIA

Potentially Potential Potential Pathway Exposed Exposure Route Selected for Population and Exposure Point Evaluation		Reason for Selection or Exclusion	Data Needs (Groundwater, Surface water, Sediment, Soil, Air)			
Current Use, (Off-Shore Impacts on Hun	nan Health				
Surfac	ce Water					
	Ingestion of surface water from river while swimming, wading and fishing in the river.	Yes	There is a potential for area residents to ingest surface water while swimming, wading, and fishing.	Surface Water from Estuary		
	Dermal contact with surface water from river while swimming, wading and fishing in the river.	Yes	There is a potential for exposures from dermal contact with surface water while swimming, wading and fishing; however surface water was analyzed for inorganics only.	Surface Water from Estuary		
Sedim	ent					
	Incidental ingestion of sediments from the river while swimming, wading and fishing.	Yes	There is a potential for residents to ingest sediments from the river while swimming, wading, and fishing.	Sediment		
	Dermal contact with sediments in the river while swimming, wading and fishing.	Yes	There is a potential for residents to ingest sediments from the river while swimming, wading and fishing.	Sediment		
Food						
	Ingestion of lobster tail, whole lobster, mussels, and flounder	Yes	Currently, area residents and fishermen catch fish and shellfish from the river.	Biota tissue analysis		

fillet.

TABLE 3-2

Consumption of Locally Caught Lobster Tail Flesh Recreational Exposures, Off-Shore Impacts Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Intake (mg/kg - day)	=	CF x IR x FI x EF x ED
		BW x AT

CF	=	Contaminant concentration in fish (mg/kg)
IR	=	Ingestion Rate (kg/day)
FI	=	Fraction Ingested from Contaminated Source (unitless)
EF	=	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
BW	=	Body Weight (kg)
ΑT	=	Averaging Time (period over which exposure is averaged - days)

Variable Values:

CF	=	Site-specific measured or modeled value
IR	=	.054 kg/day (USEPA 1991)
FI	=	1.0 (Assumed)
EF	=	350 days/year (USEPA 1991)
ED	=	30 years (USEPA 1991)
BW	=	70 kg (USEPA 1991)
ΑT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a)
		365 days/year x 70 years for carcinogenic effects (USEPA, December 1989a)

TABLE 3-2
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-	INTAKE			FRACTION INGESTED FROM		AVERAGING TIME (days)		POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)			
ln aan dii gan Babib ka kabab	CONC	CONC.	RATE	FREQUENCY		CONTAM-	BODY			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	F 2 10 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Table Street World Street		NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS	(mg/kg)	(mAvA)	(KB/GEY)	(uayaryr	(home)	GOUNGE	(vA)	CAROMOGENO	NONOM IDINOGLING		MAA	N. Harriston	MITOX
ALUMINUM	6.7292	18.2970	0.054	350	30	1	70	25,550	10,950	2 135_03	5 80E-03	4.98E-03	1.35E-02
		 	 	 	 	· · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·	 		+	
ARSENIC	2.7000	5.2600	0.054	350	30	1	70	25,550	10,950	8.56E-04	 	2.00E-03	
CADMIUM	0.0059	0.0109	0.054	350	30	1	70	25,550	10,950	1.87E-06		+	8.06E-06
СНЯОМІИМ	0.1717	0.2470	0.054	350	30	1	70	25,550	10,950	5.44E-05	7.83E-05	1.27E-04	1.83E04
COPPER	5.3747	5.8504	0.054	350	30	1	70	25,550	10,950	1.70E-03	1.85E-03	3.98E-03	4.33E-03
IRON	16.0517	54.9100	0.054	350	30	1	70	25,550	10,950	5.09E-03	1.74E-02	1.19E-02	4.06E-02
LEAD	0.0402	0.1160	0.054	350	30	1	70	25,550	10,950	1.27E-05	3.68E-05	2.97E-05	8.58E-05
MANGANESE	0.6863	1.0633	0.054	350	30	1	70	25,550	10,950	2.18E-04	3.37E-04	5.08E-04	7.87E-04
MERCURY	0.2716	0.3488	0.054	350	30	1	70	25,550	10,950	8.61E-05	1.11E-04	2.01E-04	2.58E-04
NICKEL	0.1181	0.2563	0.054	350	30	1	70	25,550	10,950	3.75E-05	8.13E-05	8.74E-05	1.90E-04
SILVER	0.1442	0.2280	0.054	350	30	1	70	25,550	10,950	4.57E-05	7.16E-05	1.07E-04	1.67E-04
ZINC	17.0493	20.0100	0.054	350	30	1	70	25,550	10,950	5.41E-03	6.34E-03	1.26E-02	1.48E-02
PESTICIDES													
ALDRIN	0.00017	0.00036	0.054	350	30	1	70	25,550	10,950	5.39E~08	1.13E-07	1.26E-07	2.64E-07
ALPHA-CHLORDANE	0.00014	0.00023	0.054	350	30	1	70	25,550	10,950	4.47E-08	7.28E-08	1.04E-07	1.70E-07
HEPTACHLOR	0.00012	0.00015	0.054	350	30	1	70	25,550	10,950	3.80E-08	4.88E-08	8.88E-08	1.14E-07
HEPTACHLOR EPOXIDE	0.00017	0.00049	0.054	350	30	1	70	25,550	10,950	5.50E-08	1.56E-07	1.28E-07	3.65E-07
HEXACHLOROBENZENE	0.00042	0.00059	0.054	350	30	1	1	25,550	10,950	1.33E-07	1.88E-07	3.11E-07	
LINDANE (GAMMA-BHC)	0.00016	0.00045	0.054	350	30	1		25,550	10,950	5.00E-08	1.44E-07	1.17E-07	3.35E-07
MIREX	0.00013	0.00015	0.054	350	30	1	70	25,550	10,950	3.99E-08	4.88E-08		1.14E-07
TRANS-NONACHLOR	0.00016	0.00026	0.054	350	30	1	70	25,550	10,950	5.07E-08	8.10E-08		1.89E-07
o,p'-DDD	0.00017	0.00035	0.054	350	30	1	70	25,550	10,950	5.42E-08	1.10E-07	1.27E-07	2.56E-07
o,p'-DDE	0.00013	0.00015	0.054	350	30	1	70	25,550	10,950	4.12E-08	4.88E-08		1.14E-07
o,p'-DDT	.0,00013	0.00015	0.054	350	30	1	70	25,550	10,950		4.88E-08		1.14E-07
p,p'-DDD	0.00019	0.00034	0.054	350	30	1	70	25,550	10,950	6.02E-08	1.07E-07		2.50E-07
p,p'-DDE	0.00074	0.00134	0.054	350	30	1	70	25,550	10,950	2.35E-07	4.26E-07		9.94E-07
p,p'-DDT	0.00050	0.00217	0.054	350	30	1	70	25,550	10,950	1.59E-07	6.87E-07	3.70E-07	1.60E-06

TABLE 3-2
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	uk (sainte la la la martina de la la la martina de la		EXPOSURE	EXPOSURE		BODY	AVERAGING TIME (days)		POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
ANALYTE	CONC.	CONC.	RATE	this has the status that	DURATION	SOURCE	WEIGHT	CARCINOCENE	CARCINO		NONCARCINOGENS AVG MAX		
POLYAROMATIC HYDROGARBONS	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOUNCE	(kg)	CANCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
ANTHRACENE	0.01543	0.08215	0.054	350	30	1	70	25,550	10.950	4.89E-06	2.60E-05	1.14E-05	6 08F-05
BENZO(A)ANTHRACENE	0.03637	0.15635	0.054	350	30	1	70	25,550	10,950		.	2.69E-05	
BENZO(A)PYRENE	0.03893	0.15900	0.054	350	30	1	70	25,550	10,950			2.88E-05	
BENZO(E)PYRENE	0.04860	0.18020	0.054	350	30	1	70	25,550	10,950	1.54E-05	5.71E-05	3.60E-05	1.33E-04
BENZO(G,H,I)PERYLENE	0.01071	0.03419	0.054	350	30	1	70	25,550	10,950	3.40E-06	1.08E-05	7.92E-06	2.53E-05
CHRYSENE	0.06258	0.27825	0.054	350	30	1	70	25,550	10,950	1.98E-05	8.82E-05	4.63E-05	2.08E-04
FLUORANTHENE	0.19187	0.84800	0.054	350	30	1	70	25,550	10,950	6.08E-05	2.69E-04	1.42E-04	6.27E-04
FLUORENE	0.01467	0.06890	0.054	350	30	1	70	25,550	10,950	4.65E-06	2.18E-05	1.09E-05	5.10E-05
INDENO(1,2,3-CD)PYRENE	0.01047	0.03472	0.054	350	30	1	70	25,550	10,950	3.32E-06	1.10E-05	7.75E-06	2.57E-05
PERYLENE	0.01708	0.05565	0.054	350	30	1	70	25,550	10,950	5.41E-06	1.76E-05	1.26E-05	4.12E-05
PHENANTHRENE	0.06516	0.33390	0.054	350	30	1	70	25,550	10,950	2.07E-05	1.08E-04	4.82E-05	2.47E-04
PYRENE	0.16044	0.68900	0.054	350	30	1	70	25,550	10,950	5.09E-05	2.18E-04	1.19E-04	5.10E-04
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.01341	0.02420	0.054	350	30	1	70	25,550	10,950	4.25E-06	7.67E-06	9.92E-06	1.79E-05

TABLE 3-3
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVERAGE	MAXIMUM	INTAKE	EXPOSURE	EXPOSURE	INATED	BODY WEIGHT	AVERAGING TIME (days)		POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)			
	CONC. (mg/kg)	CONG, (mg/kg)	RATE	FREQUENCY	DURATION					CARCINOGENS		NONCARCINOGENS	
ANALYTE			(kg/day)	(days/yr)	(years)			CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS		, , ,	, ,		1,10		1 01						
ALUMINUM	7.7685	12.0652	0.054	350	30	1	70	25,550	10,950	2.46E-03	3.82E-03	5.75E-03	8.92E-03
ARSENIC	1.3000	1.8200	0.054	350	30	1	70	25,550	10,950	4.12E-04	5.77E-04	9.62E-04	1.35E-03
CADMIUM	0.0066	0.0109	0.054	350	30	1	70	25,550	10,950	2.10E-06	3.46E-06	4.90E-06	8.06E-06
CHROMIUM	0.1866	0.1887	0.054	350	30	1	70	25,550	10,950	5.92E-05	5.98E-05	1.38E-04	1.40E-04
COPPER	5.4088	5.8483	0.054	350	30	1	70	25,550	10,950	1.71E-03	1.85E-03	4.00E-03	4.33E-03
IRON	15,2400	21,1400	0.054	350	30	1	70	25,550	10.950	4.83E-03	6.70E-03	1.13E-02	1.56E-02
LEAD	0.0415	0.0440	0.054	350	30	1	70	25.550	10.950	1.32E-05	1.39E-05	3.07E-05	3.25E-05
MANGANESE	0.8346	1.0633	0.054	350	30	1	70	25,550	10.950	2.65E-04	3.37E-04	6.17E-04	7.87E-04
MERCURY	0.2322	0.2322	0.054	350	30	1	70	25,550	10,950	7.36E-05	7.36E-05	1.72E-04	1.72E-04
NICKEL	0.2052	0.2563	0.054	350	30	1	70	25,550	10.950	6.51E-05	8.13E-05	1.52E-04	1.90E-04
SILVER	0.1586	0.2260	0.054	350	30	1	70	25,550	10,950	5.03E-05		1.17E-04	1.67E-04
ZINC	15.0195	15.8910	0.054	350	30	1	70	25,550	10,950	4.76E-03	5.04E-03	1.11E-02	1.18E-02
PESTICIDES													
ALDRIN	0.00028	0.00047	0.054	350	30	1	70	25,550	10,950	8.94E-08	1.49E-07	2.09E-07	3.48E-07
ALPHA-CHLORDANE	0.00010	0.00015	0.054	350	30	1	70	25,550	10,950	3.04E-08	4.60E-08	7.10E-08	1.07E-07
HEPTACHLOR	0.00008	0.00015	0.054	350	30	1	70	25,550	10,950	2.38E+08	4.63E-08	5.55E-08	1.08E-07
HEPTACHLOR EPOXIDE	0.00011	0.00020	0.054	350	30	1	70	25,550	10,950	3.52E-08	6.40E08	8.21E-08	1.49E-07
HEXACHLOROBENZENE	0.00016	0.00019	0.054	350	30	1	70	25,550	10,950	4.95E-08	6.12E-08	1.15E-07	1.43E-07
LINDANE (GAMMA-BHC)	0.00008	0.00009	0.054	350	30	1	70	25,550	10,950	2.63E-08	2.98E-08	6.14E-08	6.95E-08
MIREX	0.00012	0.00015	0.054	350	30	1	70	25,550	10,950	3.87E-08	4.63E-08	9.02E-08	1.08E-07
TRANS-NONACHLOR	0.00016	0.00018	0.054	350	30	1	70	25,550	10,950	5.01E-08	5.67E-08	1.17E-07	1.32E-07
o,p'-DDD	0.00013	0.00015	0.054	350	30	1	70	25,550	10,950	4.09E-08	4.63E-08	9.54E-08	1.08E-07
o,p'-DDE	0.00013	0.00015	0.054	350	30	1	70	25,550	10,950	4.09E-08	4.63E-08	9.54E-08	1.08E-07
o,p'-DDT	0.00013	0.00015	0.054	350	30	1	70	25,550	10,950	4.09E-08	4.63E-08	9.54E-08	1.08E-07
p,p'-DDD	0.00016	0.00018	0.054	350	30	1	70	25,550	10,950	5.14E-08	5.67E-08	1.20E-07	1.32E-07
p,p'-DDE	0.00042	0.00056	0.054	350	30	1	70	25,550	10,950	1.33E-07	1.77E-07	3.09E-07	4.12E-07
p,p'-DDT	0.00019	0.00024	0.054	350	30	1	70	25,550	10,950	6.09E-08	7.55E-08	1.42E-07	1.76E-07

TABLE 3-3
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

		MAXIMUM	1	EXPOSURE	EXPOSURE		BODY	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day) AVERAGING TIME (days)					
	CONC.	CONC.		FREQUENCY		INATED	WEIGHT		Constitution and the second	CARCINOGENS		NONCARCINOGENS	
	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS													
ANTHRACENE	0.04213	0.08215	0.054	350	30	1	70	25,550	10,950	1.34E-05	2.60E-05	3.12E-05	6.08E-05
BENZO(A)ANTHRACENE	0.09604	0.15635	0.054	350	30	1	70	25,550	10,950	3.04E-05	4.96E-05	7.10E-05	1.16E-04
BENZO(A)PYRENE	0.09830	0.15900	0.054	350	30	1	70	25,550	10,950	3.12E-05	5.04E-05	7.27E-05	1.18E-04
BENZO(E)PYRENE	0.11360	0.18020	0.054	350	30	1	70	25,550	10,950	3.60E05	5.71E-05	8.40E-05	1.33E-04
BENZO(G,H,I)PERYLENE	0.02273	0.03419	0.054	350	30	1	70	25,550	10,950	7.21E-06	1.08E-05	1.68E-05	2.53E-05
CHRYSENE	0.16498	0.27825	0.054	350	30	1	70	25,550	10,950	5.23E-05	8.82E-05	1.22E-04	2.06E-04
FLUORANTHENE	0.49450	0.84800	0.054	350	30	1	70	25,550	10,950	1.57E-04	2.69E-04	3.66E-04	6.27E-04
FLUORENE	0.03504	0.06890	0.054	350	30	1	70	25,550	10,950	1.11E-05	2.18E-05	2.59E-05	5.10E-05
INDENO(1,2,3-CD)PYRENE	0.02347	0.03472	0.054	350	30	1	70	25,550	10, 9 50	7.44E-06	1.10E-05	1.74E-05	2.57E-05
PERYLENE	0.03793	0.05565	0.054	350	30	1	70	25,550	10,950	1.20E-05	1.76E-05	2.81E-05	4.12E-05
PHENANTHRENE	0.17776	0.33390	0.054	350	30	1	70	25,550	10,950	5.64E-05	1.06E-04	1.31E-04	2.47E-04
PYRENE	0.40090	0.68900	0.054	350	30	1	70	25,550	10,950	1.27E-04	2.18E-04	2.97E-04	5.10E-04
POLYCHLORINATED BIPHENYLS (PCBs)			!										
TOTAL PCBs (AROCHLOR)	0.00860	0.00890	0.054	350	30	1	70	25,550	10,950	2.73E-06	2.82E-06	6.36E-06	6.58E-06

TABLE 3-4
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AROUND SEAVEY ISLAND
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVERAGE	MAXIMUM	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGIN	3 TIME (days)		ENTIAL CH AKE (mg/kg/		LY
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS													
ALUMINUM	2.2133	2.5338	0.054	350	30	1	70	25,550	10,950	7.02E-04	8.03E-04	1.64E-03	1.87E-03
ARSENIC	3.9050	5.2600	0.054	350	30	1	70	25,550	10.950	1.24E-03	1.67E-03	2.89E-03	
CADMIUM	0.0062	0.0062	0.054	350	30	1	70	25,550	10,950	1.97E-06	1.97E-06	4.59E-06	4.59E-06
CHROMIUM	0.1397	0.1442	0.054	350	30	1	70	25.550	10,950	4.43E-05	4.57E-05	1.03E-04	1.07E-04
COPPER	5.7748	5.8504	0.054	350	30	1	70	25,550	10.950	1.83E-03		4.27E-03	+
IRON	3.4750	4.7200	0.054	350	30	1	70	25,550	10,950	1.10E-03	1.50E-03		
LEAD	0.0165	0.0210	0.054	350	30		70	25,550	10,950	5.23E-06	6.66E-06	1.22E-05	1.55E-05
MANGANESE	0.5392	0.7488	0.054	350	30	•	70	25,550	10,950	 	2.37E-04		5.54E-04
MERCURY	0.3001	0.3090	0.054	350	30	 1	70	25,550	10,950	9.51E-05	9.80E-05		2.29E-04
NICKEL	0.0421	0.0666	0.054	350	30	<u>!</u>	70	25,550	10,950		2.11E-05	3.11E-05	+
SILVER	0.1047	0.1414	0.054	350	30		70	25,550	10,950		4.48E-05	7.74E-05	4.93E-05 1.05E-04
ZINC	19.5530	20.0100	0.054	350	30	<u>_</u>	70	25,550		6.20E-03		1.45E-02	
PESTICIDES									,,,,,,	J.E44 44	0.042 00	1.402 02	1.402-02
ALDRIN	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.66E-08	4.66E-08	1.09E-07	1.09E-07
ALPHA-CHLORDANE	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.66E-08	4.66E-08	1.09E-07	1.09E-07
HEPTACHLOR	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.66E-08	4.66E-08	1.09E-07	1.09E-07
HEPTACHLOR EPOXIDE	0.00032	0.00048	0.054	350	30	1	70	25,550	10,950	9.99E-08	1.53E-07	2.33E-07	3.57E-07
HEXACHLOROBENZENE	0.00059	0.00059 *	0.054	350	30	1	70	25,550	10,950	1.86E-07	1.86E-07	4.35E-07	4.35E-07
LINDANE (GAMMA-BHC)	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.66E-08	4.66E-08	1.09E-07	1.09E-07
MIREX	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.66E-08	4.66E-08	1.09E-07	1.09E-07
TRANS-NONACHLOR	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.66E-08	4.66E-08	1.09E-07	1.09E-07
o,p'-DDD	0.00025	0.00035	0.054	350	30	1	70	25,550	10,950	7.82E-08	1.10E-07	1.83E-07	2.56E-07
o,p'-DDE	0.00015	0.00015	0.054	350	30	1	70	25,550	10,950	4.66E-08	4.66E-08	1.09E-07	1.09E-07
o,p'-DDT	0.00015	0.00015	0.054	350	30		70	25,550	10,950	4.66E-08	4.66E-08	1.09E-07	1.09E-07
p,p'-DDD	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.66E-08	4.66E-08	1.09E-07	1.09E-07
p,p'-DDE	0.00118	0.00134	0.054	350	30	1	70	25,550	10,950	3.73E-07	4.26E-07	8.70E-07	9.94E-07
p,p'-DDT	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.66E-08	4.66E-08	1.09E-07	1.09E-07

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 3-4
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AROUND SEAVEY ISLAND
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVERAGE	MAXIMUM	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGING	3 TIME (days)	1 4 5 5 5	ENTIAL CH KE (mg/kg/	RONIC DAI day)	LY
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT		CARCINO	GENS	NONCARO	CINOGENS	
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS													
BENZO(A)PYRENE	0.00294	0.00399	0.054	350	30	1	70	25,550	10,950	9.32E-07	1.26E-06	2.17E-06	2.95E-06
FLUORANTHENE	0.00562	0.00935	0.054	350	30	1	70	25,550	10,950	1.78E-06	2.96E-06	4.16E-06	6.91E-06
PHENANTHRENE	0.00200	0.00273	0.054	350	30	1	70	25,550	10,950	6.32E-07	8.65E-07	1.48E-06	2.02E-08
PYRENE	0.00410	0.00630	0.054	350	30	1	70	25,550	10,950	1.30E-06	2.00E-06	3.03E-06	4.66E-06
POLYCHLORINATED BIPHENYLS (PCBs)										1		1	
TOTAL PCBs (AROCHLOR)	0.01756	0.02417	0.054	350	30	1	70	25,550	10,950	5.57E-06	7.66E-06	1.30E-05	1.79E-05

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 3-5
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVERAGE	MAXIMUM	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGING	à TIME (days)	1	ENTIAL CH AKE (mg/kg	IRONIC DAI /day)	LY
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS													
ALUMINUM	10.2058	18.2970	0.054	350	30	1	70	25,550	10,950	3.24E-03	5.80E-03	7.55E-03	1.35E-02
ARSENIC	2.8950	2.9200	0.054	350	30	1	70	25,550	10,950	9.18E-04	9.26E-04	2.14E-03	2.16E-03
CADMIUM	0.0049	0.0076	0.054	350	30	1	70	25,550	10,950	1.55E-06	 	3.62E-06	+
CHROMIUM	0.1889	0.2470	0.054	350	30	1	70	25,550	10,950	5.99E-05	7.83E-05	 	1.83E-04
COPPER	4.9405	5.7770	0.054	350	30	1	70	25,550	10,950	1.57E-03	1.83E-03	3.65E-03	4.27E-03
IRON	29.4400	54.9100	0.054	350	30	1	70	25,550	10,950	9.33E-03	1.74E-02	2.18E-02	4.06E-02
LEAD	0.0625	0.1160	0.054	350	30	1	70	25,550	10,950	1.98E-05	3.68E-05	4.62E-05	8.58E05
MANGANESE	0.6852	0.7600	0.054	350	30	1	70	25,550	10.950	2.17E-04	2.41E-04	5.07E-04	5.62E-04
MERCURY	0.2628	0.3488	0.054	350	30	1	70	25,550	10.950	8.33E-05	1.11E-04	1.94E-04	2.58E-04
NICKEL	0.1072	0.1729	0.054	350	30	1	70	25,550	10,950	3.40E-05	5.48E-05	7.93E-05	1.28E-04
SILVER	0.1693	0.1729	0.054	350	30	1	70	25,550	10,950	5.37E-05		1.25E-04	1.28E-04
ZINC	16.5755	18.3120	0.054	350	30	1	70	25,550	10,950	5.25E-03	5.81E-03		1.35E-02
PESTICIDES					'				<u> </u>				
ALDRIN	0.00012	0.00015	0.054	350	30	1	70	25,550	10,950	3.65E-08	4.88E-08	8.51E-08	1.14E-07
ALPHA-CHLORDANE	0.00016	0.00023	0.054	350	30	1	70	25,550	10,950	5.15E-08	7.28E-08	1.20E-07	1.70E-07
HEPTACHLOR	0.00013	0.00015	0.054	350	30	1	70	25,550	10,950	4.00E-08	4.88E-08	9.32E-08	1.14E-07
HEPTACHLOR EPOXIDE	0.00012	0.00016	0.054	350	30	1	70	25,550	10,950	3.87E-08	5.16E-08	9.04E-08	1.20E-07
HEXACHLOROBENZENE	0.00048	0.00059	0.054	350	30	1	70	25,550	10,950	1.52E-07	1.88E-07	3.54E-07	4.39E-07
LINDANE (GAMMA-BHC)	0.00022	0.00045	0.054	350	30	1	70	25,550	10,950	7.13E-08	1.44E-07	1.66E-07	3.35E-07
MIREX	0.00013	0.00015	0.054	350	30	1	70	25,550	10,950	4.00E-08	4.88E-08	9.32E-08	1.14E-07
TRANS-NONACHLOR	0.00018	0.00026	0.054	350	30	1	70	25,550	10,950	5.57E-08	8.10E-08	1.30E-07	1.89E-07
o,p'-DDD	0.000148	0.000154	0.054	350	30	1	70	25,550	10,950	4.69E-08	4.88E-08	1.09E-07	1.14E-07
o,p'-DDE	0.00012	0.00015	0.054	350	30	1	70	25,550	10,950	3.77E-08	4.88E-08	8.79E-08	1.14E-07
o,p'~DDT	0.00012	0.00015	0.054	350	30	1.	70	25,550	10,950	3.77E-08	4.88E-08	8.79E-08	1.14E-07
p,p'-DOD	0.00023	0.00034	0.054	350	30	1	70	25,550	10,950	7.32E-08	1.07E-07	1.71E-07	
p,p'-DDE	0.00066	0.00084	0.054	350	30	1	70	25,550	10,950	2.09E-07	2.67E-07	4.88E-07	6.24E-07
p,p'-DDT	0.00094	0.00217	0.054	350	30	1	70	25,550	10,950	2.98E-07	6.87E-07	6.96E-07	1.60E-06

TABLE 3-5
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	A GALDEL WAR	MAXIMUM CONC.	INTAKE RATE	Babba, a succession	EXPOSURE DURATION	FRACTION INGESTED FROM CONTAM- INATED	Market Control		à TIME (days)		ENTIAL CHI KE (mg/kg/i	day)	LY
ANALYTE		(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS	,												
ANTHRACENE	0.00895	0.01554	0.054	350	30	1	70	25,550	10,950	2.20E-06	4.93E-06	5.14E-06	1.15E-05
BENZO(A)ANTHRACENE	0.01981	0.03696	0.054	350	30	1	70	25,550	10,950	6.28E-06	1.17E-05	1.47E-05	2.73E-05
BENZO(A)PYRENE	0.02335	0.04200	0.054	350	30	1	70	25,550	10,950	7.40E-06	1.33E-05	1.73E-05	3.11E-05
BENZO(E)PYRENE	0.03627	0.05880	0.054	350	30	1	70	25,550	10,950	1.15E-05	1.86E-05	2.68E-05	4.35E-05
BENZO(G,H,I)PERYLENE	0.00846	0.01344	0.054	350	30	1	70	25,550	10,950	2.68E-06	4.26E-06	6.26E-06	9.94E-08
CHRYSENE	0.03487	0.05460	0.054	350	30	1	70	25,550	10,950	1.11E-05	1.73E-05	2.58E-05	4.04E-05
FLUORANTHENE	0.11429	0.20160	0.054	350	30	1	70	25,550	10,950	3.62E-05	6.39E-05	8.45E-05	1.49E-04
FLUORENE	0.01041	0.02016	0.054	350	30	1	70	25,550	10,950	3.30E-06	6.39E-06	7.70E-06	1.49E-05
INDENO(1,2,3-CD)PYRENE	0.00780	0.01302	0.054	350	30	1	70	25,550	10,950	2.47E-06	4.13E-06	5.77E-06	9.63E-06
PERYLENE	0.01363	0.02100	0.054	350	30	1	70	25,550	10,950	4.32E-06	6.66E-06	1.01E-05	1.55E-05
PHENANTHRENE	0.03220	0.05460	0.054	350	30	1	70	25,550	10,950	1.02E-05	1.73E-05	2.38E-05	4.04E-05
PYRENE	0.10436	0.20580	0.054	350	30	1	70	25,550	10,950	3.31E-05	6.52E-05	7.72E-05	1.52E-04
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.01390	0.01820	0.054	350	30	1	70	25,550	10,950	4.41E-06	5.77E-08	1.03E-05	1.35E-05

TABLE 3-6
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT YORK HARBOR SAMPLE LOCATIONS
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER- AGE CONC.	MAXI- MUM CONC.	INTAKE RATE	EXPOSURE FREQUENCY	EXPOSURE DURATION			INGESTED FROM EXPOSURE CONTAM-			3 TIME (days)	1 1 1	.KE (mg/kg/		ILY CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	Harrist Victoria	(years)	SOURCE			NONCARCINOGENS		MAX		MAX		
PESTICIDES			,, ,						The second secon		§ 5				
ALDRIN	0.00008	0.00008 *	0.054	350	30	1	70	25,550	10,950	2.63E-08	2.63E-08	6.14E-08	6.14E-08		
ALPHA-CHLORDANE	0.00026	0.00026 *	0.054	- 350	30	1	70	25,550	10,950	8.08E-08	8.08E-08	1.89E-07	1.89E-07		
HEPTACHLOR	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.63E-08	4.63E-08	1.08E-07	1.08E-07		
HEPTACHLOR EPOXIDE	0.00024	0.00024 *	0.054	350	30	1	70	25,550	10,950	7.55E-08	7.55E-08	1.76E-07	1.76E-07		
HEXACHLOROBENZENE	0.00014	0.00014 *	0.054	350	30	1	70	25,550	10,950	4.50E-08	4.50E-08	1.05E-07	1.05E-07		
LINDANE (GAMMA-BHC)	0.00008	0.00008 *	0.054	350	30	1	70	25,550	10,950	2.38E-08	2.38E-08	5.55E-08	5.55E-08		
MIREX	0.00015	0.00015	0.054	350	30	1	70	25,550	10,950	4.63E-08	4.63E-08	1.08E-07	1.08E-07		
TRANS-NONACHLOR	0.00013	0.00013 *	0.054	350	30	1	70	25,550	10,950	4.15E-08	4.15E-08	9.69E-08	9.69E-08		
o,p'-DDD	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.63E-08	4.63E-08	1.08E-07	1.08E-07		
o,p'-DDE	0.00015	0.00015	0.054	350	30	1	70	25,550	10,950	4.63E-08	4.63E-08	1.08E-07	1.08E-07		
o,p'-DDT	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.63E-08	4.63E-08	1.08E-07	1.08E-07		
p,p'-DDD	0.00039	0.00039 *	0.054	350	30	1	70	25,550	10,950	1.25E-07	1.25E-07		2.91E-07		
p,p'-DDE	0.00081	0.00081	0.054	350	30	1	70	25,550	10,950	2.57E-07		+	 		
p,p'-DDT	0.00019	0.00019 *	0.054	350	30	1	70	25,550	10,950	6.02E-08	6.02E-08	1.41E-07	1.41E-07		
POLYCHLORINATED BIPHENYLS (PCBs)															
TOTAL PCBs (AROCHLOR)	0.01290	0.01290 *	0.054	350	30	1	70	25,550	10,950	4.09E-06	4.09E-06	9.54E-06	9.54E-06		

*: AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

Consumption of Locally Caught Lobster Tail Flesh For Subsistence Fishing Residential Exposures, Off-Site, Off-Shore Impacts Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Intake (mg/kg - day)	=	CF x IR x FI x EF x ED
		BW x AT

CF	=	Contaminant concentration in fish (mg/kg)
IR	=	Ingestion Rate (kg/day)
FI	=	Fraction Ingested from Contaminated Source (unitless)
EF	· =	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
BW	=	Body Weight (kg)
AT	=	Averaging Time (period over which exposure is averaged - days)

CF	=	Site-specific measured or modeled value
IR	=	0.132 kg/day (USEPA 1991)
FI	=	1.0 (Assumed)
EF	=	350 days/year subsistence (USEPA 1991)
ED	=	30 years (USEPA 1991)
BW	=	70 kg (USEPA 1991)
ΑT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a)
		365 days/year x 70 years for carcinogenic effects (USEPA, December 1989a)

TABLE 3-7
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-				FRACTION INGESTED FROM		AVERAGING	a TIME (days)	1	ENTIAL CHI KE (mg/kg/	RONIC DAII day)	LY
	AGE	MUM	INTAKE	EXPOSURE	EXPOSURE	CONTAM-	BODY	in many many district	S. There is a second of the se	. e.da - 4.			
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT		r da de la companya d	CARCINO		NONCARO	·
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS						,							
ALUMINUM	6.7292	18.2970	0.132	350	30	1	70		1	5.21E-03			
ARSENIC	2.7000	5.2600	0.132	350	30	1		'	10,950	2.09E-03			
CADMIÚM	0.0059	0.0109	0.132	350	30	1	, -		10,950			1.07E-05	
СНВОМІИМ	0.1717	0.2470	0.132	350	30	1		25,550	10,950			3.11E-04	
COPPER	5.3747	5.8504	0.132	350	30	1	1	25,550	10,950	4.17E-03 1.24E-02			
IRON	16.0517	54.9100	0.132	350	30	1		25,550 25,550		3.11E-05			1
LEAD	0.0402	0.1160	0.132	350	30	1				5.32E-04			
MANGANESE	0.6863	1.0633	0.132	350	30 30	1	70	25,550 25,550	,	2.10E-04	ł .		
MERCURY	0.2716	0.3488	0.132	350 350	30			25,550	, . ,	9.15E-05		2.14E-04	
NICKEL	0.1181	0.2563	0.132		30	1		25,550	10,950			2.61E-04	
SILVER	0.1442	0.2260	0.132	350 350	30	1				1.32E-02		1	
ZINC	17.0493	20.0100	0.132	350	30		70	25,550	10,830	1.321-02	1.55E-02	3.08L-02	3.02L-02
PESTICIDES							70	05.550	40.050	1 005 07	0.045.07	3.07E-07	0.505.07
ALDRIN	0.00017	0.00047	0.132	350	30	1		25,550	10,950	-			+
ALPHA-CHLORDANE	0.00014	0.00023	0.132	350	30	1		25,550	10,950	1.09E-07		2.55E-07	
HEPTACHLOR	0.00012	0.00015	0.132	350	30	1	70	25,550	10,950	9.30E-08		2.17E-07	2.78E-07
HEPTACHLOR EPOXIDE	0.00017	0.00048	0.132	350	30	1	70	25,550	10,950	1.35E-07	3.72E-07	3.14E-07	8.68E-07
HEXACHLOROBENZENE	0.00042	0.00059	0.132	350	30	1	70	25,550	10,950	3.25E-07	4.60E-07	7.59E-07	1.07E-06
LINDANE (GAMMA-BHC)	0.00016	0.00045	0.132	350	30	1	70	25,550	10,950	1.22E-07	3.51E-07	2.85E-07	8.20E-07
MIREX	0.00013	0.00015	0.132	350	30	1	70	25,550	10,950	9.74E-08	1.19E-07	2.27E-07	2.78E-07
TRANS-NONACHLOR	0.00016	0.00026	0.132	350	30	1	70	25,550	10,950	1.24E-07	1.98E-07	2.89E07	4.62E-07
o.p'-DDD	0.00017	0.00035	0.132	350	30	1	70	25,550	10,950	1.33E-07	2.69E-07	3.09E-07	6.27E-07
o,p'-DDE	0.00013	0.00015	0.132	350	30	1	70	25,550	10,950	1.01E-07	1.19E-07	2.35E-07	2.78E-07
o.p'-DDT	0.00013	0.00015	0.132	350	30	1	70	25,550	10,950	1.01E-07	1.19E-07	2.35E-07	2.78E-07
p,p'-DDD	0.00019	0.00034	0.132	350	30	<u>-</u>	70	25,550	10,950	1.47E-07	2.62E-07	3.44E-07	6.12E-07
	0.00074	0.00134	0.132	350	30	1	70	25,550	10,950	5.73E-07		1.34E-06	1
p.p'-DDE	0.00074	0.00134	0.132	350	30	 	70	25,550		3.87E-07			1
p,p'-DDT	1 0.00030	0.00217	0.132	350	30	' 		20,000	1 ,3,850	10.0, 2 0,		1	1 3.322 30

TABLE 3-7
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-	INTAKE	EXPOSURE	EXPOSURE	L. Delevis of	BODY	AVERAGIN	G TIME (days)	INT	NKE (mg/kg/	**************************************	
	CONC.	CONC.	RATE	FREQUENCY	DURATION		WEIGHT			CARCINO	Production of the	1000 million (1000 million	CINOGENS
POLYAROMATIC HYDROCARBONS	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
ANTHRACENE	0.01543	0.08215	0.132	350	30	1	70	25,550	10.050	1 205 05	6 075 05	2.79E-05	4 405 04
BENZ(A)ANTHRACENE	0.03637	0.15635	0.132	350	30		70	25,550		2.82E-05			
BENZO(A)PYRENE	0.03893		0.132	350	30	,	70	25,550	10,950	3.02E-05			2.88E-04
BENZO(E)PYRENE	0.04860	0.18020	0.132	350	30	1	70	25,550	 '	3.02E-05	1.23E-04 1.40E-04		3.26E-04
BENZO(G,H,I)PERYLENE	0.01071	0.03419	0.132	350	30	1	70	25,550	10,950	8.30E-06	2.65E-05		6.18E-05
CHRYSENE	0.06258	0.27825	0.132	350	30	<u>'</u>	70	25,550	10,950	4.85E-05	2.05E-05 2.16E-04	 _	5.03E-04
FLUORANTHENE	0.19187	0.84800	0.132	350	30		70	25,550	10,950		8.57E-04		
FLUORENE	0.01467	0.06890	0.132	350	30	<u>_</u>	70	25,550	10,950		5.34E-05		
INDOENO(1,2,3-CD)PYRENE	0.01047	0.03472	0.132	350	30	<u>i</u>	70	25,550	10,950		2.69E-05		6.28E-05
PERYLENE	0.01706	0.05565	0.132	350	30	1	70	25,550	10,950		4.31E-05		ļ
PHENANTHRENE	0.06516	0.33390	0.132	350	30	1	70	25,550	10,950		2.59E-04	1.18E-04	
PYRENE	0.16044	0.68900	0.132	350	30	1	70	25,550	10.950		5.34E-04		
POLYCHLORINATED BIPHENYLS (PCBs)									1				
TOTAL PCBs (AROCHLOR)	0.01341	0.02420	0.132	350	30	1	70	25,550	10,950	1.04E-05	1.88E-05	2.42E-05	4.38E-05

TABLE 3-8
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVERAGE	MAXIMUM	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGING	TIME (days)	1 7 7	ENTIAL CH AKE (mg/kg/	IRONIC DAI (day)	ILY
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS													
ALUMINUM	7.7685	12.0652	0.381	365	30	1	70	25,550	10,950	1.81E-02	2.81E-02	4.23E-02	6.57E-02
ARSENIC	1.3000	1.8200	0.381	365	30	1	70	25,550	10,950	3.03E-03	4.25E-03	7.08E-03	9.91E-03
CADMIUM	0.0066	0.0109	0.381	365	30	1	70	25,550	10,950	1.55E-05	2.54E-05	+	+
CHROMIUM	0.1866	0.1887	0.381	365	30	1	70	25,550	10,950	4.35E-04	4.40E-04	1.02E-03	1.03E-03
COPPER	5.4088	5.8483	0.381	365	30	 	70	25,550	10.950	1.28E-02	1.36E-02		
IRON	15.2400	21,1400	0.381	365	30	1	70	25,550	10,950	3.55E-02	4.93E-02		1.15E-01
LEAD	0.0415	0.0440	0.381	365	30	1	70	25,550	10,950	9.68E-05	1.03E-04	2.28E-04	2.39E-04
MANGANESE	0.8346	1.0633	0.381	365	30	<u> </u>	70	25,550	10.950	1.95E-03	2.48E-03	4.54E-03	5.79E-03
MERCURY	0.2322	0.2322	0.381	365	30	1	70	25,550	······································	5.42E-04	5.42E-04	1.26E-03	1.26E-03
NICKEL	0.2052	0.2563	0.381	365	30	 	70	25,550		4.79E-04	5.98E-04		+
SILVER	0.2052	0.2363	0.381	365	30	1	70	25,550	10,950	3.70E-04	5.98E-04 5.27E-04	1.12E-03 8.63E-04	1.40E-03 1.23E-03
ZINC	15,0195	15.8910	0.381	365	30	 	70	25,550			<u> </u>	8.17E-02	
PESTICIDES	10.0100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					, ,	25,000	10,000	0.002 02	0.772 02	0.172 02	0.002 02
ALDRIN	0.00028	0.00047	0.381	365	30	1	70	25,550	10,950	6.58E-07	1.10E-06	1.53E-06	2.56E-06
ALPHA-CHLORDANE	0.00010	0.00015	0.381	365	30	1	70	25,550	10,950	2.24E-07	3.38E-07	5.23E-07	7.89E-07
HEPTACHLOR	0.00008	0.00015	0.381	365	30	1	70	25,550	10,950	1.75E-07	3.41E-07	4.08E-07	7.95E-07
HEPTACHLOR EPOXIDE	0.00011	0.00020	0.381	365	30	1	70	25,550	10,950	2.59E-07	4.71E-07	6.04E-07	1.10E-06
HEXACHLOROBENZENE	0.00016	0.00019	0.381	365	30	1	70	25,550	10,950	3.64E-07	4.50E-07	8.49E-07	1.05E-06
LINDANE (GAMMA-BHC)	0.00008	0.00009	0.381	365	30	1	70	25,550	10,950	1.94E-07	2.19E-07	4.52E-07	5.12E-07
MIREX	0.00012	0.00015	0.381	365	30	1	70	25,550	10,950	2.85E-07	3.41E-07	6.64E-07	7.95E-07
TRANS-NONACHLOR	0.00016	0.00018	0.381	365	30	1	70	25,550	10,950	3.69E-07	4.18E-07	8.60E-07	9.74E-07
o,p'-DDD	0.00013	0.00015	0.381	365	30	1	70	25,550	10,950	3.01E-07	3.41E-07	7.02E-07	7.95E-07
o,p'DDE	0.00013	0.00015	0.381	365	30	1	70	25,550	10,950	3.01E-07	3.41E-07	7.02E-07	7.95E-07
o,p'-DDT	0.00013	0.00015	0.381	365	30	1	70	25,550	10,950	3.01E-07	3.41E-07	7.02E-07	7.95E-07
p,p'-DDD	0.00016	0.00018	0.381	365	30	1	70	25,550	10,950	3.78E-07	4.18E-07	8.82E-07	9.74E-07
p,p'-DDE	0.00042	0.00056	0.381	365	30	1	70	25,550	10,950	9.75E-07	1.30E-06	2.28E-06	3.03E-06
p,p'-DDT	0.00019	0.00024	0.381	365	30	1	70	25,550	10,950	4.48E-07	5.55E-07	1.05E-06	1.30E-06

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 3-8
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	a juda e Marije					FRACTION	atility.	Note that the second second	Angel 1	POT	ENTIAL CH	RONIC DAI	LY
		Bail is a		Privatali è		INGESTED				INT	KE (mg/kg/	day)	
					Kari a gak	FROM		AVERAGING	TIME (days)				
	AVERAGE	MAXIMUM	INTAKE	EXPOSURE	EXPOSURE	CONTAM-	BODY						Anna an
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(увага)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS													
ANTHRACENE	0.04213	0.08215	0.381	365	30	1	70	25,550	10,950	9.83E-05	1.92E-04	2.29E-04	4.47E-04
BENZO(A)ANTHRACENE	0.09604	0.15835	0.381	365	30	1	70	25,550	10,950	2.24E-04	3.65E-04	5.23E-04	8.51E-04
BENZO(A)PYRENE	0.09830	0.15900	0.381	365	30	1	70	25,550	10,950	2.29E-04	3.71E-04	5.35E-04	8.65E-04
BENZO(E)PYRENE	0.11360	0.18020	0.381	365	30	1	70	25,550	10, 9 50	2.65E-04	4.20E-04	6.18E-04	9.81E-04
BENZO(G,H,I)PERYLENE	0.02273	0.03419	0.381	365	30	1	70	25,550	10,950	5.30E-05	7.97E-05	1.24E-04	1.86E-04
CHRYSENE	0.16498	0.27825	0.381	365	30	1	70	25,550	10,950	3.85E-04	6.49E-04	8.98E-04	1.51E-03
FLUORANTHENE	0.49450	0.84800	0.381	365	30	1	70	25,550	10,950	1.15E-03	1.98E-03	2.69E-03	4.62E-03
FLUORENE	0.03504	0.06890	0.381	365	30	1	70	25,550	10, 9 50	8.17E-05	1.61E-04	1.91E-04	3.75E-04
INDENO(1,2,3-CD)PYRENE	0.02347	0.03472	0.381	365	30	1	70	25,550	10,950	5.47E-05	8.10E-05	1.28E~04	1.89E-04
PERYLENE	0.03793	0.05565	0.381	365	30	1	70	25,550	10,950	8.85E-05	1.30E-04	2.06E-04	3.03E-04
PHENANTHRENE	0.17776	0.33390	0.381	365	30	1	70	25,550	10,950	4.15E-04	7.79E-04	9.68E-04	1.82E-03
PYRENE	0.40090	0.68900	0.381	365	30	1	70	25,550	10,950	9.35E-04	1.61E-03	2.18E-03	3.75E-03
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.00860	0.00890	0.054	350	30	1	70	25,550	10,950	2.73E-06	2.82E-06	6.36E-06	6.58E-06

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 3-9
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AROUND SEAVEY ISLAND FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER- AGE	MAXI- MUM	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	TED BODY	AVERAGIN	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS	:												
ALUMINUM	2.2133	2.5338	0.381	365	30	1	70	25,550	10,950	5.18E-03	5.91E-03	1.20E-02	1.38E-02
ARSENIC	3.9050	5.2600	0.381	365	30	1	70	25,550	10.950	9.11E-03	1.23E-02	2.13E-02	2.86E-02
CADMIUM	0.0062	0.0062	0.381	365	30	1	70	25.550	10,950	1.45E-05	+	3.37E-05	
CHROMIUM	0.1397	0.1442	0.381	365	30	1	70	25,550	10.950	3.26E-04	3.36E-04	7.60E-04	7.85E-04
COPPER	5.7748	5.8504	0.381	365	30	1	70	25,550	10.950	1.35E-02	1.36E-02	3.14E-02	3.18E-02
IRON	3.4750	4.7200	0.381	365	30	1	70	25,550	10,950	8.11E-03	1.10E-02	1.89E-02	
LEAD	0.0165	0.0210	0.381	365	30	. 1	70	25,550	10,950	3.85E-05	4.90E-05	8.98E-05	1.14E-04
MANGANESE	0.5392	0.7488	0.381	365	30	1	70	25,550	10,950	1.26E-03	1.75E-03	2.93E-03	4.08E-03
MERCURY	0.3001	0.3090	0.381	365	30			ļ				 	· · · · · · · · · · · · · · · · · · ·
	 	 		· · · · · · · · · · · · · · · · · · ·	 	1	70	25,550	10,950	7.00E-04	7.21E-04	1.63E-03	1.68E-03
NICKEL	0.0421	0.0666	0.381	365	30	1	70	25,550	10,950	9.81E-05	1.55E-04	2.29E-04	3.62E-04
SILVER	0.1047	0.1414	0.381	365	30	1	70	25,550	10,950		3.30E-04	5.70E-04	7.70E-04
ZINC	19.5530	20.0100	0.381	365	30	1	70	25,550	10,950	4.56E-02	4.67E-02	1.06E-01	1.09E-01
PESTICIDES												,	
ALDRIN	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	3.43E-07		1	8.00E-07
ALPHA-CHLORDANE	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	 	3.43E-07	8.00E-07	8.00E-07
HEPTACHLOR	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950		3.43E-07	8.00E-07	8.00E-07
HEPTACHLOR EPOXIDE	0.00032	0.00048	0.381	365	30	1	70	25,550	10,950	7.35E-07	1.13E-06	1.71E-06	2.63E-06
HEXACHLOROBENZENE	0.00059	0.00059	0.381	365	30	1	70	25,550	10,950	1.37E-06	1.37E-06	3.20E-06	3.20E-06
LINDANE (GAMMA-BHC)	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	3.43E-07	3.43E-07	8.00E-07	8.00E-07
MIREX	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	3.43E-07	3.43E-07	8.00E-07	8.00E-07
TRANS-NONACHLOR	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	3.43E-07	3.43E-07	8.00E-07	8.00E-07
o,p'-DDD	0.00025	0.00035	0.381	365	30	1	70	25,550	10,950	5.76E-07	8.08E-07	1.34E-06	1.89E-06
o,p'-DDE	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	3.43E-07	3.43E-07	8.00E-07	8.00E-07
o,p'-DDT	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950		3.43E-07	8.00E-07	8.00E-07
p,p'-DDD	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950		3.43E-07	8.00E-07	8.00E-07
p,p'-DDE	0.00118	0.00134	0.381	365	30	1	70	25,550	10.950		3.14E-06	6.40E-06	7.32E-06
p,p'-DDT	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	3.43E-07	3.43E-07		8.00E-07

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 3-9
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AROUND SEAVEY ISLAND FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-				FRACTION INGESTED FROM		AVERAGING	3 TIME (days)	1 4 34 7 003	ENTIAL CH KE (mg/kg/	RONIC DAI day)	LY
	AGE	MUM	INTAKE	EXPOSURE	EXPOSURE	CONTAM-	BODY						
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS		1											
BENZO(A)PYRENE	0.00294	0.00399	0.381	365	30	1	70	25,550	10,950	6.86E-06	9.31E-06	1,60E-05	2.17E-05
FLUORANTHENE	0.00562	0.00935	0.381	. 365	30	1	70	25,550	10,950	1.31E-05	2.18E-05	3.06E-05	5.09E-05
PHENANTHRENE	0.00200	0.00273	0.381	365	30	1	70	25,550	10,950	4.65E-06	6.37E-08	1.09E-05	1.49E-05
PYRENE	0.00410	0.00630	0.381	365	30	1	70	25,550	10,950	9.55E-06	1.47E-05	2.23E-05	3.43E-05
POLYCHLORINATED BIPHENYLS (PCBs)				•				•					
TOTAL PCBs (AROCHLOR)	0.01756	0.02417	0.381	365	30	1	70	25,550	10,950	4.10E-05	5.64E-05	9.56E-05	1.32E-04

*: AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 3-10
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVERAGE	MAXIMUM	INTAKE	EXPOSURE	EXPOSURE	a. Tee ja sirikkississa l	BODY	AVERAGING	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT	Jane 1991 History		CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS		,,,,,,	, - , - ,				,, 0,	12		To the Tay of the control of	d by the state of		
ALUMINUM	10.2058	18.2970	0.381	365	30	1	70	25,550	10,950	2.38E-02	4 27F~02	5.55E-02	9.96E-02
ARSENIC	2.8950	2.9200	0.381	365	30	1	70	25,550	 	6.75E-03	6.81E-03	 	1.59E-02
CADMIUM	0.0049	0.0076	0.381	365	30	1	70	25,550	10,950	1.14E-05	1.77E-05	 	
CHROMIUM	0.1889	0.2470	0.381	365	30	1	70	25,550	10,950	4.41E-04	5.76E-04	1.03E-03	1.34E-03
COPPER	4.9405	5.7770	0.381	365	30	<u> </u>			 				
IRON						1	70	25,550	10,950	1.15E-02		2.69E-02	
	29.4400	54.9100	0.381	365	30	1	70	25,550	10,950	6.87E-02	1.28E-01	1.60E-01	2.99E-01
LEAD	0.0625	0.1160	0.381	365	30	1	70	25,550	10,950	1.46E-04	2.71E-04	3.40E-04	6.31E-04
MANGANESE	0.6852	0.7600	0.381	365	30	1	70	25,550	10,950	1.60E-03	1.77E-03	3.73E-03	4.14E-03
MERCURY	0.2628	0.3488	0.381	365	30	1	70	25,550	10,950	6.13E-04	8.14E-04	1.43E-03	1.90E-03
NICKEL	0.1072	0.1729	0.381	365	30	1	70	25,550	10,950	2.50E-04	4.03E-04	5.83E-04	9.41E-04
SILVER	0.1693	0.1729	0.381	365	30	1	70	25,550	10,950	3.95E-04	4.03E-04	9.21E-04	9.41E-04
ZINC	16.5755	18.3120	0.381	365	30	1	70	25,550	10,950	3.87E-02	4.27E-02	9.02E-02	9.97E-02
PESTICIDES													
ALDRIN	0.00012	0.00015	0.381	365	30	1	70	25,550	10,950	2.68E-07	3.59E-07	6.26E-07	8.38E-07
ALPHA-CHLORDANE	0.00016	0.00023	0.381	365	30	1	70	25,550	10,950	3.79E-07	5.35E-07	8.84E-07	1.25E-06
HEPTACHLOR	0.00013	0.00015	0.381	365	30	1	70	25,550	10,950	2.94E-07	3.59E-07	6.86E-07	8.38E-07
HEPTACHLOR EPOXIDE	0.00012	0.00016	0.381	365	30	1	70	25,550	10,950	2.85E-07	3.80E-07	6.65E-07	8.86E-07
HEXACHLOROBENZENE	0.00048	0.00059	0.381	365	30	1	70	25,550	10,950	1.12E-06	1.39E-06	2.60E-06	3.23E-06
LINDANE (GAMMA-BHC)	0.00022	0.00045	0.381	365	30	1	70	25,550	10,950	5.25E-07	1.06E-06	1.22E-06	2.47E-08
MIREX	0.00013	0.00015	0.381	365	30	1	70	25,550	10,950	2.94E-07	3.59E-07	6.86E-07	8.38E-07
TRANS-NONACHLOR	0.00018	0.00028	0.381	365	30	1	70	25,550	10,950	4.10E-07	5.96E-07	9.57E-07	1.39E-06
o,p'-DDD	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	3.45E-07	3.59E-07	8.04E-07	8.38E-07
o,p'-DDE	0.00012	0.00015	0.381	365	30	1	70	25,550	10,950	2.77E-07	3.59E-07	6.47E-07	8.38E-07
o,p'-DDT	0.00012	0.00015	0.381	365	30	1	70	25,550	10,950		3.59E-07	8.47E-07	8.38E-07
p,p'-DDD	0.00023	0.00034	0.381	365	30	1	70	25,550	10,950	5.38E-07	7.89E-07	1.26E-06	1.84E-06
p,p'-DDE	0.00066	0.00084	0.381	365	30	1	70	25,550	10,950	1.54E-08	1.97E-06	3.59E-06	4.59E-06
p.p'-DDT	0.00094	0.00217	0.381	365	30	1	70	25,550	10,950	2.19E-06		5.12E-06	1.18E-05

TABLE 3-10
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVERAGE CONC.	MAXIMUM CONC.	INTAKE RATE	EXPOSURE FREQUENCY	EXPOSURE DURATION	FRACTION INGESTED FROM CONTAM- INATED	BODY WEIGHT		a TiME (days)	1 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1	ENTIAL CH AKE (mg/kg/ GENS	(day)	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(daya/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS													
ANTHRACENE	0.00695	0.01554	0.381	365	30	1	70	25,550	10,950	1.62E-05	3.62E-05	3.78E-05	8.46E-05
BENZ(A)ANTHRACENE	0.01981	0.03696	0.381	365	30	1	70	25,550	10,950	4.62E-05	8.62E-05	1.08E-04	2.01E-04
BENZO(A)PYRENE	0.02335	0.04200	0.381	365	30	1	70	25,550	10,950	5.45E-05	9.80E-05	1.27E-04	2.29E-04
BENZO(E)PYRENE	0.03627	0.05880	0.381	365	30	1	70	25,550	10,950	8.46E-05	1.37E-04	1.97E-04	3.20E-04
BENZO(G,H,I)PERYLENE	0.00846	0.01344	0.381	365	30	1	70	25,550	10,950	1.97E-05	3.14E-05	4.60E-05	7.32E-05
CHRYSENE	0.03487	0.05460	0.381	365	30	1	70	25,550	10,950	8.13E-05	1.27E-04	1.90E-04	2.97E-04
FLUORANTHENE	0.11429	0.20160	0.381	365	30	1	70	25,550	10,950	2.67E-04	4.70E-04	6.22E-04	1.10E-03
FLUORENE	0.01041	0.02016	0.381	365	30	1	70	25,550	10,950	2.43E-05	4.70E-05	5.67E-05	1.10E-04
INDENO(1,2,3-CD)PYRENE	0.00780	0.01302	0.381	365	30	1	70	25,550	10,950	1.82E-05	3.04E-05	4.24E-05	7.09E-05
PERYLENE	0.01363	0.02100	0.381	365	30	1	70	25,550	10,950	3.18E-05	4.90E-05	7.42E-05	1.14E-04
PHENANTHRENE	0.03220	0.05460	0.381	365	30	1	70	25,550	10,950	7.51E-05	1.27E-04	1.75E-04	2.97E-04
PYRENE	0.10436	0.20580	0.381	365	30	1	70	25,550	10,950	2.43E-04	4.80E-04	5.68E-04	1.12E-03
POLYCHLORINATED BIPHENYLS (PCBs)			;										
TOTAL PCBs (AROCHLOR)	0.01390	0.01820	0.381	365	30	1	70	25,550	10,950	3.24E-05	4.25E-05	7.57E-05	9.91E-05

TABLE 3-11
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT YORK HARBOR SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-				FRACTION INGESTED FROM		AVERAGING	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
Silver a first of the control of	AGE	3.00	INTAKE	EXPOSURE	EXPOSURE	Feb. 11.	BODY						
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
PESTICIDES											4		
ALDRIN	0.00008	0.00008 *	0.381	365	30	1	70	25,550	10,950	1.94E-07	1.94E-07	4.52E-07	4.52E-07
ALPHA-CHLORDANE	0.00026	0.00026 *	0.381	365	30	1	70	25,550	10,950	5.95E-07	5.95E-07	1.39E-06	1.39E-06
HEPTACHLOR	0.00015	0.00015 *	0.381	365	30	1	70	25,550	10,950	3.41E-07	3.41E-07	7.95E-07	7.95E-07
HEPTACHLOR EPOXIDE	0.00024	0.00024 *	0.381	365	30	1	70	25,550	10,950	5.55E-07	5.55E-07	1.30E-06	1.30E-06
HEXACHLOROBENZENE	0.00014	0.00014 *	0.381	365	30	1	70	25,550	10,950	3.31E-07	3.31E-07	7.73E-07	7.73E-07
LINDANE (GAMMA-BHC)	0.00008	0.00008 *	0.381	365	30	1	70	25,550	10,950	1.75E-07	1.75E-07	4.08E-07	4.08E-07
MIREX	0.00015	0.00015 *	0.381	365	30	1	70	25,550	10,950	3.41E-07	3.41E-07	7.95E-07	7.95E-07
TRANS-NONACHLOR	0.00013	0.00013 *	0.381	365	30	1	70	25,550	10,950	3.06E-07	3.06E-07	7.13E-07	7.13E-07
o,p'-DDD	0.00015	0.00015 *	0.381	365	30	1	70	25,550	10,950	3.41E-07	3.41E-07	7.95E-07	7.95E-07
o,p'-DDE	0.00015	0.00015 *	0.381	365	30	1	70	25,550	10,950	3.41E-07	3.41E-07	7.95E-07	7.95E07
o,p'-DDT	0.00015	0.00015 *	0.381	365	30	1	70	25,550	10,950	3.41E-07	3.41E-07	7.95E-07	7.95E-07
p,p'-DDD	0.00039	0.00039 *	0.381	365	30	1	70	25,550	10,950	9.19E-07	9.19E-07	2.14E-06	2.14E-06
p,p'-DDE	0.00081	0.00081 *	0.381	365	30	1	70	25,550	10,950	1.89E-06	1.89E-06	4.41E-06	4.41E-06
p,p'-DDT	0.00019	0.00019 *	0.381	365	30	1	70	25,550	10,950	4.43E-07	4.43E-07	1.03E-08	1.03E-06
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.01290	0.01290 *	0.381	365	30	1	70	25,550	10,950	3.01E-05	3.01E-05	7.02E-05	7.02E-05

*: AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

Consumption of Locally Caught Whole Lobster (Tail Flesh and Hepatopancreas Weighted Average) Recreational Exposures, Off-Shore Impacts Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Intake (mg/kg - day)	=	CF x IR x FI x EF x ED
		BW x AT

CF	=	Contaminant concentration in fish (mg/kg)
IR	=	Ingestion Rate (kg/day)
FI	=	Fraction Ingested from Contaminated Source (unitless)
EF	=	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
BW	=	Body Weight (kg)
ΑT	=	Averaging Time (period over which exposure is averaged - days)

CF	=	Site-specific measured or modeled value
IR	=	.054 kg/day (USEPA 1991)
FI	=	1.0 (Assumed)
EF	=	350 days/year (USEPA 1991)
ED	=	30 years (USEPA 1991)
BW	=	70 kg (USEPA 1991)
ΑT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a)
		365 days/year x 70 years for carcinogenic effects (USEPA, December 1989a)

TABLE 3-12
CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER- AGE	MAXI- MUM	INTAKE		EXPOSURE	ter Proceeder on Judician	D	AVERAGIN	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)					
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	CINOGENS	
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(уеага)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX	
INORGANICS														
ALUMINUM	6.7567	17.8130	0.054	″. 350	30	1	70	25,550	10,950	2.14E-03	5.65E-03	5.00E-03	1.32E-02	
ARSENIC	3.0626	6.0663	0.054	350	30	1	70	25,550	10,950	9.71E-04	1.92E-03	2.27E-03	4.49E-03	
CADMIUM	0.4508	0.9511	0.054	350	30	1	70	25,550	10,950	1.43E-04	3.02E-04	3.33E-04	7.04E-04	
CHROMIUM	0.1792	0.2639	0.054	350	30	1	70	25,550	10.950	5.68E-05	8.37E-05	1.33E-04	1.95E-04	
COPPER	12.2007	20.2817	0.054	350	30	1	70	25,550	10,950	3.87E-03	6.43E-03		1.50E-02	
IRON	17.8709	54.5033	0.054	350	30	1	70	25,550	10.950	5.67E-03	1.73E-02	1.32E-02	4.03E-02	
LEAD	0.0446	0.1228	0.054	350	30	1	70	25,550	10.950	1.41E-05	3.89E-05	 	9.08E-05	
MANGANESE	0.8946	1.2996	0.054	350	30	1	70	25,550	10,950	2.84E-04	4.12E-04	6.62E-04	9.61E-04	
MERCURY	0.2531	0.3277	0.054	350	30	1	70	25,550	10,950	8.02E-05	1.04E-04	1.87E-04	2.42E-04	
NICKEL	0.1533	0.3349	0.054	350	30	1	70	25,550	10.950	4.86E-05	1.06E-04	 	2.48E-04	
SILVER	0.1874	0.3285	0.054	350	30	1	70	25,550	10.950	5.94E-05	1	 		
ZINC		24.2099	0.054	350	30	1		25,550				1.35E-02	<u> </u>	
PESTICIDES								\						
ALDRIN	0.00025	0.00074	0.054	350	30	1	70	25,550	10,950	8.07E-08	2.33E-07	1.88E-07	5.45E-07	
ALPHA-CHLORDANE	0.00054	0.00126	0.054	350	30	1	70	25,550	10,950	1.70E-07	3.98E-07	3.96E-07	9.29E-07	
HEPTACHLOR	0.00017	0.00024	0.054	350	30	1	70	25,550	10,950	5.31E-08	7.65E-08	1.24E-07	1.79E-07	
HEPTACHLOR EPOXIDE	0.00023	0.00065	0.054	350	30	1	70	25,550	10,950	7.24E-08	2.05E-07	1.69E-07	4.77E-07	
HEXACHLOROBENZENE	0.00172	0.00434	0.054	350	30	1	70	25,550	10,950	5.46E-07	1.37E-06	1.27E-06	3.21E-06	
LINDANE (GAMMA-BHC)	0.00046	0.00219	0.054	350	30	1	70	25,550	10,950	1.47E-07	6.94E-07	3.42E-07	1.62E~06	
MIREX	0.00018	0.00025	0.054	350	30	1	70	25,550	10,950	5.82E-08	7.82E-08	1.36E-07	1.83E-07	
TRANS-NONACHLOR	0.00217	0.00395	0.054	350	30	1	70	25,550	10,950	6.89E-07	1.25E-06	1.61E-06	2.92E-06	
o,p'-DDD	0.00021	0.00037	0.054	350	30	1	70	25,550	10,950	6.58E-08	1.17E-07	1.54E-07	2.73E-07	
o,p'-DDE	0.00041	0.00082	0.054	350	30	1	70	25,550	10,950	1.30E-07	2.59E-07	3.04E-07	6.05E-07	
o,p'-DDT	0.00034	0.00075	0.054	350	30	1	70	25,550	10,950	1.08E-07	2.38E-07	2.53E-07	5.55E-07	
p.p'-DDD	0.00222	0.00381	0.054	350	30	1	70	25,550	10,950	7.03E-07	1.21E-06		2.82E-06	
p,p'-DDE	0.02151	0.03937	0.054	350	30	1	70	25,550		6.82E-06	1.25E-05	1.59E-05	2.91E-05	
p,p'-DDT	0.00099	0.00268	0.054	350	30	1	70	25,550	10,950	3.15E-07	8.50E-07	7.36E-07	1.98E-06	

TABLE 3-12
CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	A TOTAL A	MAXI- MUM CONC.		The regular between the printer	EXPOSURE DURATION	100000000000000000000000000000000000000	BODY WEIGHT	AVERAGINO	1 1 1 1 1 1 1 1	KE (mg/kg/		CINOGENS	
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS													
ANTHRACENE	0.01581	0.07837	0.054	- 350	30	1	70	25,550	10,950	5.01E-06	2.48E-05	1.17E-05	5.80E-05
BENZO(A)ANTHRACENE	0.04003	0.15901	0.054	350	30	1	70	25,550	10,950	1.27E-05	5.04E-05	2.96E-05	1.18E-04
BENZO(A)PYRENE	0.04459	0.16491	0.054	350	30	1	70	25,550	10,950	1.41E-05	5.23E-05	3.30E-05	1.22E-04
BENZO(E)PYRENE	0.05512	0.18597	0.054	350	30	1	70	25,550	10,950	1.75E-05	5.90E-05	4.08E-05	1.38E-04
BENZO(G,H,I)PERYLENE	0.01537	0.04466	0.054	350	30	1	70	25,550	10,950	4.87E-06	1.42E-05	1.14E-05	3.30E-05
CHRYSENE	0.06712	0.27442	0.054	350	30	1	70	25,550	10,950	2.13E-05	8.70E-05	4.97E-05	2.03E-04
FLUORANTHENE	0.20586	0.83358	0.054	350	30	1	70	25,550	10,950	6.53E-05	2.64E-04	1.52E-04	6.17E-04
FLUORENE	0.01419	0.06377	0.054	350	30	1	70	25,550	10,950	4.50E-06	2.02E-05	1.05E-05	4.72E-05
INDENO(1,2,3-CD)PYRENE	0.01455	0.04384	0.054	350	30	1	70	25,550	10,950	4.61E-06	1.39E-05	1.08E-05	3.24E-05
PERYLENE	0.02426	0.05767	0.054	350	30	1	70	25,550	10,950	7.69E-06	1.83E-05	1.79E-05	4.27E-05
PHENANTHRENE	0.13049	0.31770	0.054	350	30	1	70	25,550	10,950	4.14E-05	1.01E-04	9.65E-05	2.35E-04
PYRENE	0.17237	0.68001	0.054	350	30	1	70	25,550	10,950	5.46E-05	2.16E-04	1.28E-04	5.03E-04
POLYCHLORINATED BIPHENYLS (PCBs)												1	
TOTAL PCBs (AROCHLOR)	0.12256	0.25847	0.054	350	30	1	70	25,550	10,950	3.89E-05	8.19E-05	9.07E-05	1.91E-04

TABLE 3-13
CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT YORK HARBOR SAMPLE LOCATIONS
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER- AGE CONC.	MAXI- MUM CONG.	INTAKE RATE	EXPOSURE FREQUENCY	EXPOSURE DURATION		BODY	AVERAGIN	int	NKE (mg/kg/			
ANALYTE	Jan Talista v.	(mg/kg)	(kg/day)			SOURCE	(kg)	CARCINOCENS	NONCARCINICATIVA	CARCINO	P		CINOGENS
PESTICIDES	(mgskg)	(mg/xg)	(Kg/Gay)	(days/yr)	(years)	SOUNCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
ALDRIN	0.00013	0.00013	0.054	350	30	1	70	25,550	10.950	3 99F_08	3.99E-08	0 32F_08	0.32F_08
ALPHA-CHLORDANE	0.00023	0.00028	0.054	350	30	1	70	25,550	10.950	7.36E-08	8.96E-08		2.09E-07
HEPTACHLOR	0.00013	0.00018	0.054	350	30	1	70	25,550	10.950	4.22E-08	5.79E-08		
HEPTACHLOR EPOXIDE	0.00022	0.00027	0.054	350	30	1	70	25,550	10,950	6.87E-08	8.47E-08		
HEXACHLOROBENZENE	0.00013	0.00174	0.054	350	30	1	70	25,550	10,950	4.10E-08	5.52E-07		
LINDANE (GAMMA-BHC)	0.00007	0.00013	0.054	350	30	1	70	25,550	10,950	2.17E-08	4.21E-08	5.05E-08	
MIREX	0.00013	0.00018	0.054	350	30	1	70	25,550	10,950	4.22E-08	5.81E-08	9.84E-08	1.36E-07
TRANS-NONACHLOR	0.00012	0.00224	0.054	350	30	1	70	25,550	10,950	3.78E-08	7.12E-07	8.83E-08	1.66E-06
o,p'DDE	0.00013	0.00057	0.054	350	30	1	70	25,550	10,950	4.22E-08	1.79E-07	9.84E-08	4.19E-07
p.p'-DDD	0.00036	0.00067	0.054	350	30	1	70	25,550	10,950	1.14E-07	2.13E-07	2.66E-07	4.98E-07
p,p'-DDE	0.00074	0.02499	0.054	350	30	1	70	25,550	10,950	2.34E-07	7.92E-06	5.46E-07	1.85E-05
p,p'-DDT	0.00017	0.00022	0.054	350	30	1	70	25,550	10,950	5.49E-08	7.08E-08	1.28E-07	1.65E-07
POLYCHLORINATED BIPHENYLS (PCBs)													1
TOTAL PCBs (AROCHLOR)	0.01175	0.09184	0.054	350	30	1	70	25,550	10,950	3.73E-06	2.91E-05	8.69E-06	6.79E-05

Consumption of Locally Caught Whole Lobster (Tail Flesh and Hepatopancreas Weighted Average) For Subsistence Fishing Residential Exposures, Off-Shore Impacts

Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Intake (mg/kg - day) = $\frac{CF \times IR \times FI \times EF \times ED}{BW \times AT}$

CF	=	Contaminant concentration in fish (mg/kg)
IR	=	Ingestion Rate (kg/day)
FI	=	Fraction Ingested from Contaminated Source (unitless)
EF	=	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
BW	=	Body Weight (kg)
AT	=	Averaging Time (period over which exposure is averaged - days)

CF	=	Site-specific measured or modeled value weighted average value for flesh and hepato pancreas (see
		Section 3.4.2.2.2)
IR	=	0.132 kg/day (USEPA 1991)
FI	=	1.0 (Assumed)
EF	=	350 days/year subsistence (USEPA 1991)
ED	=	30 years (USEPA 1991)
BW	=	70 kg (USEPA 1991)
ΑT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a)
		365 days/year x 70 years for carcinogenic effects (USEPA, December 1989a)

TABLE 3-14
CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGIN	G TIME (days)	Ludre, Hersa	ENTIAL CH AKE (mg/kg/	RONIC DAI	LY
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS	660 130												
ALUMINUM	6.7567	17.8130	0.132	350	30	1	70	25,550	10,950	5.24E-03	1.38E-02	1.22E-02	3.22E-02
ARSENIC	3.0626	6.0663	0.132	350	30	1			10,950	2.37E-03	4.70E-03	5.54E-03	1.10E-02
CADMIUM	0.4508	0.9511	0.132	350	30	1			10,950			8.15E-04	
CHROMIUM	0.1792	0.2639	0.132	350	30	1		25,550	10,950	1.39E-04	2.05E-04	3.24E-04	4.77E-04
COPPER	12.2007		0.132	350	30	1	1	25,550	10,950		L	2.21E-02	1 1
IRON		54.5033	0.132	350	30	1		25,550	10,950			3.23E-02	
LEAD	0.0446	0.1228	0.132	350	30	1		25,550	10, 9 50			8.06E-05	
MANGANESE	0.8946	1.2996	0.132	350	30	1		25,550	10,950			1.62E-03	
MERCURY	0.2531	0.3277	0.132	350	30	1	1	25,550	10,950			4.58E-04	
NICKEL	0.1533	0.3349	0.132	350	30	1	1	25,550	10,950			2.77E-04	
SILVER	0.1874	0.3285	0.132	350	30	1	<u> </u>	25,550	10,950			3.39E-04	
ZINC	18.2385	24.2099	0.132	350	30	1	70	25,550	10,950	1.41E-02	1.88E-02	3.30E-02	4.38E-02
PESTICIDES													
ALDRIN	0.00025	0.00074	0.132	350	30	1	70	25,550	10,950	1.97E-07	5.71E-07	4.60E-07	1.33E-06
ALPHA-CHLORDANE	0.00054	0.00128	0.132	350	30	1	70	25,550	10,950	4.15E-07	9.73E-07	9.69E-07	2.27E-06
HEPTACHLOR	0.00017	0.00024	0.132	350	30	1	70	25,550	10,950	1.30E-07	1.87E-07	3.03E-07	4.36E-07
HEPTACHLOR EPOXIDE	0.00023	0.00065	0.132	350	30	1	70	25,550	10,950	1.77E-07	5.00E-07	4.13E-07	1.17E-06
HEXACHLOROBENZENE	0.00172	0.00434	0.132	350	30	1	70	25,550	10,950	1.34E-06	3.36E-06	3.12E-06	7.84E-06
LINDANE (GAMMA-BHC)	0.00046	0.00219	0.132	350	30	1	70	25,550	10,950	3.58E-07	1.70E-06	8.36E-07	3.96E-06
MIREX	0.00018	0.00025	0.132	350	30	1	70	25,550	10,950	1.42E-07	1.91E-07	3.32E-07	4.46E-07
TRANS-NONACHLOR	0.00217	0.00395	0.132	350	30	1	70	25,550	10,950	1.68E-06	3.06E-06	3.93E-06	7.14E-06
o,p'-DDD	0.00021	0.00037	0.132	350	30	1	70	25,550	10,950	1.61E-07	2.86E-07	3.75E-07	6.68E-07
o,p'-DDE	0.00041	0.00082	0.132	350	30	1	70	25,550	10,950	3.18E-07	6.34E-07	7.42E-07	1.48E06
o,p'-DDT	0.00034	0.00075	0.132	350	30	1	70	25,550	10,950	2.65E-07	5.82E-07	6.18E-07	1.36E-06
p,p'-DDD	0.00222	0.00381	0.132	350	30	1	70	25,550	10,950	1.72E-06	2.96E-06	4.01E-06	6.90E-06
p,p'-DDE	0.02151	0.03937	0.132	350	30	1	70	25,550	10,950	1.67E-05	3.05E-05	3.89E-05	7.12E-05
p,p'-DDT	0.00099	0.00268	0.132	350	30	1	70	25,550	10,950	7.71E-07	2.08E-06	1.80E-06	4.85E-06

TABLE 3-14
CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	11.00	MAXI- MUM	INTAKE	EXPOSURE			BODY		S TIME (days)	INT	KE (mg/kg/		
	CONC.	CONC.	RATE	La linum dintah ini Basi	DURATION		WEIGHT	 	r 	CARCINO	, , , , , , , , , , , , , , , , , , , 	· · · · · · · · · · · · · · · · · · ·	CINOGENS
	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS													
ANTHRACENE	0.01581	0.07837	0.132	350	30	1	70	25,550	10,950	1.23E-05	6.07E-05	2.86E-05	1.42E-04
BENZO(A)ANTHRACENE	0.04003	0.15901	0.132	350	30	1	70	25,550	10,950	3.10E-05	1.23E-04	7.24E-05	2.88E-04
BENZO(A)PYRENE	0.04459	0.16491	0.132	350	30	1	70	25,550	10,950	3.46E-05	1.28E-04	8.06E-05	2.98E-04
BENZO(E)PYRENE	0.05512	0.18597	0,132	350	30	1	70	25,550	10,950	4.27E-05	1.44E-04	9.97E-05	3.36E-04
BENZO(G,H,I)PERYLENE	0.01537	0.04466	0.132	350	30	1	70	25,550	10,950	1.19E-05	3.46E-05	2.78E-05	8.08E-05
CHRYSENE	0.06712	0.27442	0.132	350	30	1	70	25,550	10,950	5.20E-05	2.13E-04	1.21E-04	4.98E-04
FLUORANTHENE	0.20586	0.83358	0.132	350	30	1	70	25,550	10,950	1.60E-04	6.46E-04	3.72E-04	1.51E-03
FLUORENE	0.01419	0.06377	0.132	350	30	1	70	25,550	10,950	1.10E-05	4.94E-05	2.57E-05	1.15E-04
INDENO(1,2,3-CD)PYRENE	0.01455	0.04384	0.132	350	30	1	70	25,550	10,950	1.13E-05	3.40E-05	2.63E-05	7.93E-05
PERYLENE	0.02426	0.05767	0.132	350	30	1	70	25,550	10,950	1.88E-05	4.47E-05	4.39E-05	1.04E-04
PHENANTHRENE	0.13049	0.31770	0.132	350	30	1	70	25,550	10,950	1.01E-04	2.46E-04	2.36E-04	5.74E-04
PYRENE	0.17237	0.68001	0.132	350	30	1	70	25,550	10,950	1.34E-04	5.27E-04	3.12E-04	1.23E-03
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.12256	0.25847	0.132	350	30	1	70	25,550	10,950	9.50E-05	2.00E-04	2.22E-04	4.67E-04

TABLE 3-15
CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT YORK HARBOR SAMPLE LOCATIONS FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI- MUM	INTAKE	EXPOSURE	EXPOSURE		BODY	AVERAGIN	G TIME (days)	INT	ENTIAL CH KE (mg/kg/	(day)	
Baranta - Marines Millandi - Albari Millandi	CONC.	CONC.	RATE	FREQUENCY		INATED	WEIGHT			CARCINO	,	 	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
PESTICIDES			ı	,									
ALDRIN	0.00013	0.00013	0.381	365	30	1	70	25,550	10,950	2.94E-07	2.94E-07	6.86E-07	6.86E-07
ALPHA-CHLORDANE	0.00023	0.00028	0.381	365	30	1	70	25,550	10,950	5.42E-07	6.59E-07	1.26E-06	1.54E-06
HEPTACHLOR	0.00013	0.00018	0.381	365	30	1	70	25,550	10,950	3.10E-07	4.26E-07	7.24E-07	9.93E-07
HEPTACHLOR EPOXIDE	0.00022	0.00027	0.381	365	30	1	70	25,550	10,950	5.08E-07	6.23E-07	1.18E-06	1.45E-06
HEXACHLOROBENZENE	0.00013	0.00174	0.381	365	30	1	70	25,550	10,950	3.02E-07	4.06E-06	7.04E-07	9.47E-06
LINDANE (GAMMA-BHC)	0.00007	0.00013	0.381	365	30	1	70	25,550	10,950	1.59E-07	3.10E-07	3.72E-07	7.23E-07
MIREX	0.00013	0.00018	0.381	365	30	1	70	25,550	10,950	3.10E-07	4.28E-07	7.24E-07	9.98E-07
TRANS-NONACHLOR	0.00012	0.00224	0.381	365	30	1	70	25,550	10,950	2.78E-07	5.24E-06	6.50E-07	1.22E-05
o,p'-DDE	0.00013	0.00057	0.381	365	30	1	70	25,550	10,950	3.10E-07	1.32E-06	7.24E-07	3.08E-06
p,p'-DDD	0.00036	0.00067	0.381	365	30	1	70	25,550	10,950	8.37E-07	1.57E-06	1.95E-06	3.66E-06
p,p'-DDE	0.00074	0.02499	0.381	365	30	1	70	25,550	10,950	1.72E-06	5.83E-05	4.02E-06	1.36E-04
p,p'DDT	0.00017	0.00022	0.381	365	30	1	70	25,550	10,950	4.04E-07	5.21E-07	9.42E-07	1.22E-06
POLYCHLORINATED BIPHENYLS (PCBs)									· · · · · · · · · · · · · · · · · · ·				
TOTAL PCBs (AROCHLOR)	0.01175	0.09184	0.381	365	30	1	70	25,550	10,950	2.74E-05	2.14E-04	6.40E-05	5.00E-04

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

Consumption of Locally Caught Mussels Recreational Exposures, Off-Shore Impacts Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Intake (mg/kg - day) = $\frac{CF \times IR \times FI \times EF \times ED}{BW \times AT}$

CF	=	Contaminant concentration in fish (mg/kg)
IR	=	Ingestion Rate (kg/day)
FI	=	Fraction Ingested from Contaminated Source (unitless)
EF	=	Exposure Frequency (days/year)
ED		Exposure Duration (years)
BW	=	Body Weight (kg)
ΑT	=	Averaging Time (period over which exposure is averaged - days)

CF	=	Site-specific measured or modeled value
IR	=	.054 kg/day (USEPA 1991)
FI	=	1.0 (Assumed)
EF	=	350 days/year (USEPA 1991)
ED	=	30 years (USEPA 1991)
BW	=	70 kg (USEPA 1991)
ΑT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a)
		365 days/year x 70 years for carcinogenic effects (USEPA, December 1989a)

TABLE 3-16
CONSUMPTION OF MUSSELS CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI- MUM	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGINO	3 TIME (days)		ENTIAL CH AKE (mg/kg/	RONIC DAI	LY
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	INOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS	-												
ALUMINUM	29.9680	58.9860	0.054	350	30	1	70	25,550	10,950	9.50E-03	1.87E-02	2.22E-02	4.36E-02
ARSENIC	0.8652	2.2000	0.054	350	30	1	70	25,550	10,950	2.74E-04	6.97E-04	6.40E-04	1.63E-03
CADMIUM	0.2062	0.3432	0.054	350	30	1	70	25,550	10,950	6.54E-05	1.09E-04	1.53E-04	2.54E-04
CHROMIUM	0.4021	0.6040	0.054	350	30	1	70	25.550	10,950	1.27E-04	1.91E-04	2.97E-04	4.47E-04
COPPER	0.8333	3.1654	0.054	350	30	1	70	25,550	10.950	2.64E-04	1.00E-03	6.16E-04	2.34E-03
IRON	65.1706	128.7000	0.054	350	30	1	70	25,550	10,950	2.07E-02	4.08E-02	4.82E-02	9.52E-02
LEAD	1.0316	3.1200	0.054	350	30	1	70	25,550	10.950	3.27E-04	9.89E-04	7.63E-04	2.31E-03
MANGANESE	1.7338	8.1360	0.054	350	30	1	70	25,550	10,950	5.50E-04	2.58E-03	1.28E-03	6.02E-03
MERCURY	0.0465	0.1096	0.054	350	30	<u> </u>	70	25,550	10,950	1.47E-05	3.47E-05		8.11E-05
NICKEL	0.2099	0.4681	0.054	350	30	1	70	25.550	10,950	6.65E-05	1.48E-04	1.55E-04	3.46E-04
SILVER	0.0430	0.4077	0.054	350	30	1	70	25,550	10,950	1.36E-05	1.29E-04	3.18E-05	3.02E-04
ZINC	12.5182	25.0860	0.054	350	30	1	70	25,550		3.97E-03		9.26E-03	1.86E-02
PESTICIDES								· · · · · · · · · · · · · · · · · · ·			1		
ALDRIN	0.00028	0.00377	0.054	350	30	1	70	25,550	10,950	8.72E-08	1.20E-06	2.03E-07	2.79E-06
ALPHA-CHLORDANE	0.00040	0.00262	0.054	350	30	1	70	25,550	10,950	1.25E-07	8.30E-07	2.92E-07	1.94E-06
HEPTACHLOR	0.00007	0.00002	0.054	350	30	1	70	25,550	10,950	2.06E-08	6.66E-09	4.81E-08	1.55E-08
HEPTACHLOR EPOXIDE	0.00004	0.00025	0.054	350	30	1	70	25,550	10,950	1.14E-08	8.02E-08	2.66E-08	1.87E-07
HEXACHLOROBENZENE	0.00022	0.00548	0.054	350	30	1	70	25,550	10,950	7.10E-08	1.74E-06	1.66E-07	4.08E-06
LINDANE (GAMMA-BHC)	0.00017	0.00414	0.054	350	30	1	70	25,550	10,950	5.45E-08	1.31E-06	1.27E-07	3.06E-06
MIREX	0.00008	0.00015	0.054	350	30	1	70	25,550	10,950	2.63E-08	4.72E-08	6.14E-08	1.10E-07
TRANS-NONACHLOR	0.00038	0.00265	0.054	350	30	1	70	25,550	10,950	1.21E-07	8.40E-07	2.83E-07	1.96E-06
o,p'DDD	0.00025	0.00196	0.054	350	30	1	70	25,550	10,950	7.80E-08	6.21E-07	1.82E-07	1.45E-06
o,p'-DDE	0.00009	0.00017	0.054	350	30	1	70	25,550	10,950	2.92E-08	5.45E-08	6.81E-08	1.27E-07
o,p'-DDT	0.00031	0.00347	0.054	350	30	1	70	25,550	10,950	9.95E-08	1.10E-06	2.32E-07	2.57E-06
p,p'-DDD	0.00150	0.00954	0.054	350	30	1	70	25,550	10,950	4.76E-07	3.03E-06	1.11E-06	7.06E-06
p,p'-ODE	0.00147	0.01038	0.054	350	30	1	70	25,550	10,950	4.66E-07	3.29E-06	1.09E-06	7.68E-06
p,p'-DDT	0.00138	0.00963	0.054	350	30	1	70	25,550	10,950	4.38E-07	3.05E-08	1.02E-06	7.12E-06

TABLE 3-16
CONSUMPTION OF MUSSELS CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AGE	MAXI- MUM CONC.	INTAKE BATE		EXPOSURE DURATION	FRACTION INGESTED FROM CONTAM- INATED	BODY WEIGHT		TIME (days)		.KE (mg/kg/	RONIC DAII day) NONGARO	
ANALYTE		(mg/kg)	(kg/day)		(years)			 	NONCARCINOGENS		MAX		MAX
POLYAROMATIC HYDROCARBONS	(uiBurg)	(mgreg)	(wgral)	(acya),	(your o)	0001102	("9)	O/II IO/II O GENE	nonoratomo zeno	,,,,	1017		1017 (32
ANTHRACENE	0.00115	0.00649	0.054	350	30	1	70	25,550	10,950	3.63E-07	2.06E-06	8.48E-07	4.80E-06
BENZO(A)ANTHRACENE	0.00206	0.00741	0.054	350	30	1	70	25,550	10,950	6.55E-07	2.35E-06	1.53E-06	5.48E-06
BENZO(A)PYRENE	0.00134	0.00456	0.054	350	30	1	70	25,550	10,950	4.25E-07	1.45E-06	9.92E-07	3.37E-08
BENZO(E)PYRENE	0.00470	0.01320	0.054	350	30	1	70	25,550	10,950	1.49E-06	4.18E-06	3.48E-06	9.76E-06
CHRYSENE	0.00420	0.00948	0.054	350	30	1	70	25,550	10,950	1.33E-06	3.01E-06	3.11E-06	7.01E-06
FLUORANTHENE	0.00997	0.02700	0.054	350	30	1	70	25,550	10,950	3.16E-06	8.56E-06	7.37E-06	2.00E-05
PERYLENE	0.00193	0.00420	0.054	350	30	1	70	25,550	10,950	6.12E-07	1.33E-06	1.43E-06	3.11E-06
PHENANTHRENE	0.00353	0.01320	0.054	350	30	1	70	25,550	10,950	1.12E-06	4.18E-06	2.61E-06	9.76E-06
PYRENE	0.00949	0.02400	0.054	350	30	1	70	25,550	10,950	3.01E-06	7.61E-06	7.02E-06	1.78E-05
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.02153	0.06002	0.054	350	30	1	70	25,550	10,950	6.83E-06	1.90E-05	1.59E-05	4.44E-05

TABLE 3-17
CONSUMPTION OF MUSSELS CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI- MUM	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGINO	a TIME (days)		ENTIAL CH KE (mg/kg/	RONIC DAI	
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT	u Madi u u ujua		CARCINO	GENS	NONCARO	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS													
ALUMINUM	34.3034	53.7030	0.054	350	30	1	70	25,550	10,950	1.09E-02	1.70E-02	2.54E-02	3.97E-02
ARSENIC	0.9480	1.2800	0.054	350	30	1	70	25,550	10,950	3.01E-04	4.06E-04	7.01E-04	9.47E-04
CADMIUM	0.1666	0.2025	0.054	350	30	1	70	25,550	10,950	5.28E-05	6.42E-05	1.23E-04	1.50E-04
CHROMIUM	0.4248	0.5031	0.054	350	30	1	70	25,550	10,950	1.35E-04	1.59E-04	3.14E-04	3.72E-04
COPPER	0.6797	0.7830	0.054	350	30	1	70	25,550	10,950	2.15E-04	2.48E-04	5.03E-04	5.79E-04
IRON	68.3140	102.2600	0.054	350	30	1	70	25,550	10,950	2.17E-02	3.24E-02	5.05E-02	7.58E-02
LEAD	0.8230	1.3500	0.054	350	30	1	70	25.550	10,950	2.61E-04	4.28E-04	6.09E-04	9.99E-04
MANGANESE	1.2728	1.6335	0.054	350	30	1	70	25.550	10.950	4.03E-04	5.18E-04	9.41E-04	1.21E-03
MERCURY	0.0611	0.0864	0.054	350	30	1	70	25,550	10.950	1.94E-05	2.74E-05	4.52E-05	6.39E-05
NICKEL	0.1946	0.2925	0.054	350	30	1	70	25,550	10.950	6.17E-05	9.27E-05	1.44E-04	2.16E-04
SILVER	0.0162	0.0214	0.054	350	30	1	70	25,550	10,950	5.14E-06	6.78E-06	1.20E-05	1.58E-05
ZINC	12.2544	18,9000	0.054	350	30	<u> </u>	70	25,550		3.88E-03		9.06E-03	1.40E-02
PESTICIDES	12.0011	1070							,				
ALDRIN	0.00085	0.00377	0.054	350	30	1	70	25,550	10,950	2.70E-07	1.20E-06	6.30E-07	2.79E-06
ALPHA-CHLORDANE	0.00078	0.00262	0.054	350	30	1	70	25,550	10,950	2.47E-07	8.30E-07	5.76E-07	1.94E-06
HEXACHLOROBENZENE	0.00113	0.00548	0.054	350	30	1	70	25,550	10,950	3.59E-07	1.74E-06	8.37E-07	4.06E-06
TANS-NONACHLOR	0.00078	0.00265	0.054	350	30	1	70	25,550	10,950	2.49E-07	8.40E-07	5.80E-07	1.96E-06
o,p'-DDD	0.00045	0.00196	0.054	350	30	1	70	25,550	10,950	1.42E-07	6.21E-07	3.32E-07	1.45E-08
p,p'-DDD	0.00254	0.00954	0.054	350	30	1	70	25,550	10,950	8.04E-07	3.03E-06	1.88E-06	7.06E-06
p.p'-DDE	0.00276	0.01038	0.054	350	30	1	70	25,550		8.76E-07	3.29E-06	2.04E-06	7.68E-06
p.p'-DDT	0.00228	0.00963	0.054	350	30	[1	70	25,550	10,950	7.24E-07	3.05E-06	1.69E-06	7.12E-06
POLYAROMATIC HYDROCARBONS													
BENZO(A)ANTHRACENE	0.00338	0.00741	0.054	350	30	1	70	25,550	10,950			2.50E-06	.
BENZO(A)PYRENE	0.00237	0.00456	0.054	350	30	1	70	25,550	10,950	7.52E-07	1.45E-06	1.76E-06	3.37E-06
BENZO(E)PYRENE	0.00491	0.00767	0.054	350	30	1	70	25,550	10,950	1.56E-06	2.43E-06	3.63E-06	5.67E-06
CHRYSENE	0.00477	0.00948	0.054	350	30	1	70	25,550	10,950	1.51E-06	3.01E-06	3.53E-06	7.01E-06
FLUORANTHENE	0.01084	0.02210	0.054	350	30	1	70	25,550		3.44E-06	7.01E-06	8.02E-06	1.63E-05
PERYLENE	0.00189	0.00403	0.054	350	30	1	70	25,550	10,950	6.00E-07	1.28E-06	1.40E-06	2.98E-06
PHENANTHRENE	0.00486	0.01320	0.054	350	30	1	70	25,550	10,950	1.54E-06	4.18E-06	3.60E-06	9.76E-06
PYRENE	0.01071	0.02080	0,054	350	30	1	70	25,550	10,950	3.40E-06	6.59E-06	7.92E-06	1.54E-05
POLYCHLORINATED BIPHENYLS (PCBs)									,, 111		7 00F 55	4 005 55	4 705 65
TOTAL PCBs (AROCHLOR)	0.01730	0.02330	0.054	350	30	1	70	25,550	10,950	5.48E-06	7.39E-06	1.28E-05	1.72E-05

TABLE 3-18
CONSUMPTION OF MUSSELS CAUGHT AROUND SEAVEY ISLAND
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGINO	a TIME (days)		ENTIAL CH KE (mg/kg/	RONIC DAI	LY
	9] 10c.a(f909)	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	ZENIC	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	Administration of the Control	NONCARCINOGENS		MAX	AVG	MAX
INORGANICS	(mg/kg)	(mg/kg)	(Kgruay)	(da)ayı)	(Joseph)	0001,04	("'8)				MANA INC.		3005.000 a and
ALUMINUM	28.1933	58,9860	0.054	350	30	1	70	25,550	10,950	8.94E-03	1.87E-02	2.09E-02	4.36E-02
ARSENIC	0.7221	1.3500	0.054	350	30	1		25,550	10,950	2.29E-04	4.28E-04	5.34E-04	9.99E-04
CADMIUM	0.2141	0.3432	0.054	350	30	1	70	25,550	10,950	6.79E-05	1.09E-04	1.58E-04	2.54E-04
CHROMIUM	0.3694	0.4884	0.054	350	30	1	70	25,550	10,950			2.73E-04	
COPPER	0.8679	3.1654	0.054	350	30	1	70	25,550	10,950			6.42E-04	
IRON	63.4179	128.7000	0.054	350	30	1	70	25,550				4.69E-02	
LEAD	1.0204	3.1200	0.054	350	30	1	70	25,550		3.23E-04		1	
MANGANESE	1.7297	8.1360	0.054	350	30	1		25,550			2.58E-03		6.02E-03
MERCURY	0.0463	0.1096	0.054	350	30			25,550	1			3.43E-05	
NICKEL	0.1930	0.3510	0.054	350	30	1		25,550			1.11E-04		2.60E-04
SILVER	0.0242	0.2904	0.054	350	30	1	<u> </u>	25,550		7.67E-06			
ZINC	11.9847	25.0860	0.054	350	30	1	70	25,550	10,950	3.80E-03	7.95E-03	8.87E-03	1.86E-02
PESTICIDES	_		,								405.45	4 075 07	0.000
ALDRIN	0.00017	0.00045	0.054	350	30		1			5.45E-08			
ALPHA-CHLORDANE	0.00026	0.00081	0.054	350	30	1	A	25,550		8.08E-08	2.58E-07	1.89E-07	6.02E-07
HEPTACHLOR EPOXIDE	0.00003	0.00025	0.054	350	30	1	70	25,550	10,950	1.05E-08	8.02E-08	4	+
LINDANE (GAMMA-BHC)	0.00024	0.00414	0.054	350	30	1		25,550	10,950	7.55E-08	1.31E-06		3.06E-06
TRANS-NONACHLOR	0.00025	0.00055	0.054	350	30	1	70	25,550	10,950	7.96E-08	1.74E-07	1.86E-07	4.07E-07
o,p'-DDD	0.00013	0.00082	0.054	350	30	1	70	25,550	10,950	4.22E-08	2.58E-07	9.84E-08	6.03E-07
o.p'-DDE	0.00009	0.00017	0.054	350	30	1	70	25,550	10,950	2.69E-08	5.45E-08	6.29E-08	1.27E-07
o,p'-DDT	0.00039	0.00347	0.054	350	30	1	70	25,550	10,950	1.24E-07	1.10E-06	2.89E-07	2.57E-06
p,p'-DDD	0.00088	0.00228	0.054	350	30	1	70	25,550	10,950	2.73E-07	7.21E-07	6.37E-07	1.68E-06
p,p'-DDE	0.00107	0.00203	0.054	350	30	1	70	25,550	10,950	3.38E-07	6.45E-07	7.89E-07	1.50E-06
p.p'-DDT	0.00133	0.00709	0.054	350	30	1	70	25,550	10,950	4.23E-07	2.25E-06	9.87E-07	5.25E-06
POLYAROMATIC HYDROCARBONS	0.00100	5.607.65	1									<u> </u>	
ANTHRACENE	0.00173	0.00649	0.054	350	30	j 1	70	25,550	10,950	5.49E-07	2.06E-06	1.28E-06	4.80E-06
BENZO(E)PYRENE	0.00356	0.00765	0.054	350	30	1	70	25.550	10,950	1.13E-06	2.43E-06	2.63E-06	5.66E-06
CHRYSENE	0.00373	0.00726	0.054	350	30	1	70	25,550	10.950	1.18E-06	2.30E-06	2.76E-06	5.37E-06
FLUORANTHENE	0.00375	0.00725	0.054	350	30	1		25,550			4.42E-06		1.03E-05
PERYLENE	0.00190	0.01385	0.054	350	30	 	70	25,550		6.01E-07	1.33E-06		3.11E-06
	0.00190	0.00420	0.054	350	30	1		25,550	10,950	1.11E-06	1.79E-08	2.58E-06	4.17E-06
PHENANTHRENE		 	·	350	30	1	↓	25,550	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			5.96E-06	
PYRENE	0.00805	0.01328	0.054	350	30	<u> </u>	/0	25,550	10,950	2.55E-00	7.211-00	0.00100	J.02E-00
POLYCHLORINATED BIPHENYLS (PCBs)							70	25,550	10.050	6.22E-06	1.545-05	1.455_05	3.59E-05
TOTAL PCBs (AROCHLOR)	0.01963	0.04847	0.054	350	30	11	1 /0	∠5,550	10,950	0.22E-06	1.046-09	1.45E-05	3.38E-05

TABLE 3-19
CONSUMPTION OF MUSSELS CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

		Д'n.				FRACTION			**************************************	1.	ENTIAL CH	IRONIC DAI	LY
	AVER-	MAXI-				FROM		AVEDAGINA	G TIME (days)	"""	(ırıAıvAı	ua <i>jj</i>	
	AGE	MUM	INTAKE	EXPOSURE	EXPOSURE	[40345 127 H. 25]	BODY	VAEUVGIKI	a imc (uays)				
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	0510	MONGAR))OOFNO
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)				CARCINIOGENO	INONO ADDINO ADDINO		***************************************		INOGENS
INORGANICS	(mg/kg)	(mg/kg)	(kg/uay)	(uaya/yi)	(years)	SOUNCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
ALUMINUM	30.5080	46,9800	0.054	050									,
ARSENIC	1.1338	2.2000	0.054	350 350	30	11	70	25,550	10,950			2.26E-02	1
CADMIUM	0.2311	0.2904	0.054		30	1	70	25,550	10,950		1		1.63E-03
CHROMIUM	0.4518	0.6040	0.054	350	30	1	70	25,550	10,950		9.21E-05	1.71E-04	
COPPER	0.4518	1.2684	0.054	350 350	30	1	70	25,550	10,950	1.43E-04	1.91E-04		4.47E-04
IRON	65.8938	96.5600	0.054	350	30	1	70	25,550	10,950	2.77E-04	4.02E-04	6.47E-04	9.38E-04
LEAD	1.1333	1.8570	0.054	350	30	1	70	25,550	10,950	2.09E-02	3.06E-02	4.87E-02	7.14E-02
MANGANESE	1.9280	5.6927	0.054	350		1	70 70	25,550	10,950	3.59E-04	5.89E-04	8.38E-04	1.37E-03
MERCURY	0.0375	0.0581	0.054	350	30 30	1	70	25,550	10,950	6.11E-04	1.B0E-03	1.43E-03	4.21E-03
NICKEL	0.0375	0.4681	0.054	350	30	1	70	25,550	10,950	1.19E-05		2.78E-05	4.30E-05
SILVER	0.1025	0.4077	0.054	350	30	1	70	25,550	10,950	7.92E-05	1.48E-04	1.85E-04	3.46E-04
ZINC	13.8689	18.4800	0.054	350	30	<u> </u>	70	25,550 25,550		3.25E-05	1.29E-04		
PESTICIDES	10.0000	18.4800	0.054	350	30	1	70	25,550	10,950	4.40E-03	5.86E-03	1.03E-02	1.37E-02
ALDRIN	0.00018	0.00036	0.054	350	30	1	70	25.550	10.050	5045 00	4.445.03		
ALPHA-CHLORDANE	0.00054	0.00115	0.054	350	30	1	70	25,550				1.32E-07	
HEPTACHLOR	0.00006	0.00002	0.054	350	30	1	70	25,550	10,950	1		3.97E-07	8.53E-07
HEPTACHLOR EPOXIDE	0.00003	0.00002	0.054	350	30	' -	70	25,550	10,950 10,950	1.84E-08 9.83E-09		4.29E-08	1.48E-08
HEXACHLOROBENZENE	0.00010	0.00003	0.054	350	30	1	70	25,550	10,950	3.04E-08	1.90E-09 1.05E-08	2.29E-08 7.10E-08	4.44E-09
LINDANE (GAMMA-BHC)	0.00006	0.00015	0.054	350	30	1	70	25,550	10,950	1.78E-08	4.88E-08	4.14E-08	2.44E-08
MIREX	0.00007	0.00015	0.054	350	30		70	25,550	10,950	1.78E-08 2.19E-08		5.10E-08	1.14E-07
TRANS-NONACHLOR	0.00048	0.00121	0.054	350	30	1	70	25,550	10,950	1.52E-07			1.09E-07
o,p'-DDD	0.00041	0.00121	0.054	350	30	1	70	25,550	10,950	1.52E-07 1.28E-07	4.33E-07		8.91E-07
o,p'-DDE	0.00007	0.00009	0.054	350	30	1	70	25,550	,			3.00E-07	1.01E-06
o,p'-DDT	0.00024	0.00061	0.054	350	30		70	25,550	10,950		2.69E-08	5.47E-08	6.29E-08
p,p'-DDD	0.00256	0.00705	0.054	350	30	1	70		10,950		1.94E-07	1.74E-07	4.53E-07
p.p'-DDE	0.00238	0.00705	0.054	350	30		70	25,550	10,950		2.23E-06		5.21E-06
p,p'-DDT	0.00173	0.00457	0.054	350	30	1	70	25,550	10,950		1.45E-06	1.28E-06	
hih pp.	0.00102	0.00228	0.054	350	30	1	/0]	25,550	10,950	3.22E-07	7.27E-07	7.52E-07	1.70E-06

TABLE 3-19
CONSUMPTION OF MUSSELS CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER- AGE	MAXI- MUM	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGIN	G TIME (days)	T	ENTIAL CH .KE (mg/kg/	RONIC DAI day)	LY
[18]	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	INOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS		1											
BENZO(A)ANTHRACENE	0.00220	0.00602	0.054	350	30	1	70	25,550	10,950	6.97E-07	1.91E-06	1.63E-06	4.45E-06
BENZO(E)PYRENE	0.00642	0.01320	0.054	350	30	1	70	25,550	10,950	2.03E-06	4.18E-06	4.75E-06	
CHRYSENE	0.00462	0.00900	0.054	350	30	1	70	25,550	10,950			3.42E-06	
FLUORANTHENE	0.01121	0.02700	0.054	350	30	1	70	25,550	10,950			8.29E-06	
PERYLENE	0.00204	0.00392	0.054	350	30	1	70	25,550	10,950	6.46E-07	1.24E-06	1.51E-06	2.90E-06
PHENANTHRENE	0.00275	0.00525	0.054	350	30	1	70	25,550	10,950	8.73E-07	1.66E-06	2.04E-08	.
PYRENE	0.01107	0.02400	0.054	350	30	1	70	25,550				8.19E-06	
POLYCHLORINATED BIPHENYLS (PCBs)					1				1				
TOTAL PCBs (AROCHLOR)	0.02843	0.06000	0.054	350	30	1	70	25,550	10,950	9.01E-06	1.90E-05	2.10E-05	4.44E-05

TABLE 3-20
CONSUMPTION OF MUSSELS CAUGHT AT YORK HARBOR SAMPLE LOCATIONS
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-				FRACTION INGESTED FROM		AVERAGIN	G TIME (days)	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	AGE	MUM	INTAKE	EXPOSURE	EXPOSURE	CONTAM-	BODY			<u> </u>		<u>, 11</u>		
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	CINOGENS	
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(daya/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX	
INORGANICS	<u>.</u>													
ALUMINUM	24.9303	34.0340	0.054	350	30	1	70	25,550	10,950	7.90E-03	1.08E-02	1.84E-02	2.52E-02	
ARSENIC	0.5513	0.9700	0.054	. 350	30	1	70	25,550	10,950	1.75E-04	3.08E-04	4.08E-04	7.18E-04	
CADMIUM	0.1914	0.2156	0.054	350	30	1	70	25,550	10,950	6.07E-05	6.84E-05	1.42E-04	1.59E-04	
CHROMIUM	0.2633	0.3388	0.054	350	30	1	70	25,550	10,950	8.35E-05	1.07E-04	1.95E-04	2.51E-04	
COPPER	0.8603	0.9548	0.054	350	30	1	70	25,550	10,950	2.73E-04	3.03E-04	6.36E-04	7.06E-04	
IRON	50.7650	62.0600	0.054	350	30	1	70	25,550	10,950	1.61E-02	1.97E-02	3.76E-02	4.59E-02	
LEAD	0.2625	0.3850	0.054	350	30	1	70	25,550	10,950	8.32E-05	1.22E-04	1.94E-04	2.85E-04	
MANGANESE	1.1895	1.4500	0.054	350	30	1	70	25,550	10,950	3.77E-04	4.60E-04	8.80E-04	1.07E-03	
MERCURY	0.0423	0.0678	0.054	350	30	1	70	25,550	10,950	1.34E-05	2.15E-05	3.13E-05	5.02E-05	
NICKEL	0.1549	0.2002	0.054	350	30	1	70	25,550	10,950	4.91E-05	6.35E-05	1.15E-04	1.48E-04	
SILVER	0.0133	0.0181	0.054	350	30	1	70	25,550	10,950	4.22E-06	5.74E-06	9.86E-06	1.34E-05	
ZINC	11.3873	12.9630	0.054	350	30	1	70	25,550	10,950	3.61E-03	4.11E-03	8.42E-03	9.59E-03	
PESTICIDES														
ALDRIN	0.00009	0.00020	0.054	350	30	1	70	25,550	10,950	2.75E-08	6.28E-08	6.42E-08	1.46E-07	
ALPHA-CHLORDANE	0.00039	0.00101	0.054	350	30	1	70	25,550	10,950	1.22E-07	3.20E-07	2.85E-07	7.48E-07	
HEPTACHLOR	0.00023	0.00077	0.054	350	30	1	70	25,550	10,950	7.29E-08	2.43E-07	1.70E-07	5.66E-07	
TRANS-NONACHLOR	0.00057	0.00117	0.054	350	30	1	70	25,550	10,950	1.82E-07	3.70E-07	4.24E-07	8.63E-07	
o,p'-DDD	0.00031	0.00053	0.054	350	30	1	70	25,550	10,950	9.70E-08	1.68E-07	2.26E-07	3.92E-07	
o,p'-DDT	0.00010	0.00023	0.054	350	30	1	70	25,550	10,950	3.25E-08	7.45E-08	7.58E-08	1.74E-07	
p,p'-DDD	0.00078	0.00100	0.054	350	30	1	70	25,550	10,950	2.48E-07	3.16E-07	5.79E-07	7.38E-07	
p.p'-DDE	0.00073	0.00089	0.054	350	30	1	70	25,550	10,950	2.31E-07	2.84E-07	5.39E-07	6.62E-07	
p,p'-DDT	0.00110	0.00296	0.054	350	30	1	70	25,550	10,950	3.50E-07	9.37E-07	8.17E-07	2.19E-06	
POLYAROMATIC HYDROCARBONS														
FLUORANTHENE	0.00501	0.00705	0.054	350	30	1	70	25,550	10,950	1.69E-06	2.24E-06	3.70E-06	5.22E-06	
PHENANTHRENE	0.00345	0.00645	0.054	350	30	1	70	25,550	10,950	1.09E-06	2.04E-06	2.55E-06	4.77E-06	
PYRENE	0.00321	0.00570	0.054	350	30	1	70	25,550	10,950			2.37E-06	4.22E-06	
POLYCHLORINATED BIPHENYLS (PCBs)														
TOTAL PCBs (AROCHLOR)	0.01367	0.01663	0.054	350	30	1	70	25,550	10,950	4.33E-06	5.27E-06	1.01E-05	1.23E-05	

TABLE 3-21
CONSUMPTION OF MUSSELS CAUGHT AT THE GREAT BAY ESTUARY SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

Line of the Control o			8 F			FRACTION INGESTED FROM			POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	AVER-	MAXI-						AVERAGIN					
	AGE	MUM	INTAKE	EXPOSURE	EXPOSURE	CONTAM-	BODY						
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS													
ALUMINUM	44.0878	66.2340	0.054	350	30	1	70	25,550	10,950	1.40E-02	2.10E-02	3.26E-02	4.90E-02
ARSENIC	1.0940	1.7800	0.054	. 350	30	1	70	25,550	10,950	3.47E-04	5.64E-04	8.09E-04	1.32E-03
CADMIUM	0.2761	0.4214	0.054	350	30	1	70	25,550	10,950	8.75E-05	1.34E-04	2.04E-04	3.12E-04
CHROMIUM	0.6153	0.8428	0.054	350	30	1	70	25,550	10,950	1.95E-04	2.67E-04	4.55E-04	6.23E-04
COPPER	0.9787	1.1220	0.054	350	30	1	70	25,550	10,950	3.10E-04	3.56E-04	7.24E-04	8.30E-04
IRON	88.9800	121.9800	0.054	350	30	1	70	25,550	10,950	2.82E-02	3.87E-02	6.58E-02	9.02E-02
LEAD	0.5278	0.6610	0.054	350	30	1	70	25,550	10,950	1.67E-04	2.10E-04	3.90E-04	
MANGANESE	5.7381	11.2700	0.054	350	30	1	70	25,550	10,950	1.82E-03	3.57E-03	4.24E-03	8.34E-03
MERCURY	0.0402	0.0570	0.054	350	30	1	70	25,550	10,950	1.27E-05	1.81E-05	2.97E-05	4.22E-05
NICKEL	0.2703	0.3078	0.054	350	30	1	70	25,550	10,950	1		2.00E-04	
SILVER	0.2063	0.2744	0.054	350	30	1	70	25,550	10,950	6.54E-05	_		
ZINC	14.7860	18.7440	0.054	350	30	1	70	25,550	10,950	4.69E-03	5.94E-03	1.09E-02	1.39E-02
PESTICIDES								,					
ALDRIN	0.00026	0.00030	0.054	350	30	1	70	25,550	10,950	8.34E-08	9.35E-08		
ALPHA-CHLORDANE	0.00072	0.00097	0.054	350	30	1	70	25,550	10,950	2.28E-07	3.07E-07	5.33E-07	
LINDANE (GAMMA-BHC)	0.00013	0.00051	0.054	350	30	1	70	25,550	10,950	4.18E-08		9.76E-08	
TRANS-NONACHLOR	0.00059	0.00087	0.054	350	30	1	70	25,550	10,950	1.87E-07	2.75E-07	4.36E-07	6.42E-07
o,p'-DDD	0.00027	0.00050	0.054	350	30	1	70	25,550	10,950	8.56E-08	1.57E-07	2.00E-07	3.67E-07
o,p'-DDT	0.00009	0.00024	0.054	350	30	1	70	25,550	10,950	2.85E-08	7.74E-08	6.66E-08	1.80E-07
p.p'-DDD	0.00165	0.00249	0.054	350	30	1	70	25,550	10,950	5.22E-07	7.90E-07	1.22E-06	1.84E-06
p,p'-DDE	0.00241	0.00449	0.054	350	30	1	70	25,550	10,950	7.62E-07	1.42E-06	1.78E-06	3.32E-06
p,p'-DDT	0.00063	0.00161	0.054	350	30	1	70	25,550	10,950	2.00E-07	5.10E-07	4.68E-07	1.19E-06
POLYAROMATIC HYDROCARBONS										<u> </u>			
BENZO(A)ANTHRACENE	0.00592	0.01200	0.054	350	30	1	70	25,550	10,950	1.88E-06	3.80E-06	4.38E-06	8.88E-06
BENZO(A)PYRENE	0.00693	0.01200	0.054	350	30	1	70	25,550	10,950	2.20E-08	3.80E-06	5.13E-06	8.88E-06
BENZO(E)PYRENE	0.01504	0.02800	0.054	350	30	1	70	25,550	10,950	4.77E-06	8.88E-06	1.11E-05	2.07E-05
CHRYSENE	0.00914	0.01600	0.054	350	30	1	70	25,550	10,950	2.90E-06	5.07E-06	6.76E-06	1.18E-05
FLUORANTHENE	0.01168	0.01800	0.054	350	30	1	70	25,550	10,950	3.70E-06	5.71E-06	8.64E-06	1.33E-05
PERYLENE	0.00723	0.01100	0.054	350	30	1	70	25,550	10,950	2.29E-06	3.49E-06	5.35E-06	8.14E-06
PHENANTHRENE	0.00158	0.00418	0.054	350	30	1	70	25,550	10,950	5.02E-07	1.33E-06	1.17E-06	3.09E-06
PYRENE	0.01756	0.03500	0.054	350	30	1	70	25,550	10,950	5.57E-06	1.11E-05	1.30E-05	2.59E-05
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.00901	0.03629	0.054	350	30	1	70	25,550	10,950	2.86E-06	1.15E-05	6.66E-06	2.68E-05

Consumption of Locally Caught Mussels For Subsistence Fishing Residential Exposures, Off-Site, Off-Shore Impacts Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Intake (mg/kg - day) = $\frac{CF \times IR \times FI \times EF \times ED}{BW \times AT}$

CF	=	Contaminant concentration in fish (mg/kg)
IR	=	Ingestion Rate (kg/day)
FI	=	Fraction Ingested from Contaminated Source (unitless)
EF	=	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
BW	=	Body Weight (kg)
AT	=	Averaging Time (period over which exposure is averaged - days)

CF	=	Site-specific measured or modeled value
IR	=	0.132 kg/day (USEPA 1991)
FI	=	1.0 (Assumed)
EF	=	350 days/year subsistence (USEPA 1991)
ED	=	30 years (USEPA 1991)
BW	=	70 kg (USEPA 1991)
ΑT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a)
		365 days/year x 70 years for carcinogenic effects (USEPA, December 1989a)

TABLE 3-22
CONSUMPTION OF MUSSELS CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	Harrist and a	AVERAGIN	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS													
ALUMINUM	29.9680	58.9860	0.132	350	30	1	70	25,550	10,950	2.32E-02	4.57E-02	5.42E-02	1.07E-01
ARSENIC	0.8652	2.2000	0.132	350	30	1	70				1.70E-03		3.98E-03
CADMIUM	0.2062	0.3432	0.132	350	30	1	70	25,550		1	2.66E-04		1
CHROMIUM	0.4021	0.6040	0.132	350	30	1	70		1	L	4.68E-04	1	
COPPER	0.8333	3,1654	0.132	350	30	1	70				2.45E-03	L	5.72E-03
IRON	65.1706	128.7000	0.132	350	30	1	70	25,550			9.97E-02	1	2.33E-01
LEAD	1.0316	3.1200	0.132	350	30	1	70	25,550	·		2.42E-03		5.64E-03
MANGANESE	1.7338	8.1360	0.132	350	30	1	70	25,550	10,950		6.31E-03		
MERCURY	0.0465	0.1096	0.132	350	30	1	70		10,950		8.49E-05	L	
NICKEL	0.2099	0.4681	0.132	350	30	1	70	25,550	1		3.63E-04	1	8.46E-04
SILVER	0.0430	0.4077	0.132	350	30	1	70	25,550	1		3.16E-04		7.37E-04
ZINC	12.5182	25.0860	0.132	350	30	1	70	25,550	10,950	9.70E-03	1.94E-02	2.26E-02	4.54E-02
PESTICIDES													
ALDRIN	0.00028	0.00377	0.132	350	30	1	70	25,550	10,950	2.13E-07	2.92E-06	4.97E-07	6.82E-06
ALPHA-CHLORDANE	0.00040	0.00262	0.132	350	30	1	70	25,550	10,950	3.08E-07	2.03E-06	7.14E-07	4.74E-06
HEPTACHLOR	0.00007	0.00002	0.132	350	30	1	70	25,550	10,950	5.04E-08	1.63E-08	1.18E-07	3.80E-08
HEPTACHLOR EPOXIDE	0.00004	0.00025	0.132	350	30	1	70	25,550	10,950	2.79E-08	1.96E-07	6.51E-08	4.57E-07
HEXACHLOROBENZENE	0.00022	0.00548	0.132	350	30	1	70	25,550	10,950	1.74E-07	4.25E-06	4.05E-07	9.92E-06
LINDANE (GAMMA-BHC)	0.00017	0.00414	0.132	350	30	1	70	25,550	10,950	1.33E-07	3.21E-06	3.11E-07	7.49E-06
MIREX	0.00008	0.00015	0.132	350	30	1	70	25,550	10,950	6.43E-08	1.15E-07	1.50E-07	2.69E-07
TRANS-NONACHLOR	0.00038	0.00265	0.132	350	30	1	70	25,550	10,950	2.97E-07	2.05E-06	6.93E-07	4.79E-06
o,p'-DDD	0.00025	0.00196	0.132	350	30	1	70	25,550	10,950	1.91E-07	1.52E-06	4.45E-07	3.54E-06
o,p'-DDE	0.00009	0.00017	0.132	350	30	1	70	25,550	10,950	7.13E-08	1.33E-07	1.66E-07	3.11E-07
o,p'-DDT	0.00031	0.00347	0.132	350	30	1	70	25,550	10,950	2.43E-07	2.69E-06	5.68E-07	6.28E-06
p.p'-DDD	0.00150	0.00954	0.132	350	30	1	70	25,550	10,950	1.16E-06	7.40E-06	2.72E-06	1.73E-05
p,p'-DOE	0.00147	0.01038	0.132	350	30	1	70	25,550	10,950	1.14E-06	8.05E-06	2.66E-06	1.88E-05
p.p'-DDT	0.00138	0.00963	0,132	350	30	1	70	25,550	10,950	1.07E-06	7.46E-06	2.50E-06	1.74E-05

TABLE 3-22
CONSUMPTION OF MUSSELS CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AGE	MAXI- MUM	INTAKE	EXPOSURE	1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		BODY		a TIME (days)	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day) CARCINOGENS NONCARCINOG			
	Children value	CONC.	RATE	To the first and the same of	DURATION	SOURCE	WEIGHT	1,11 10000000	NONCARCINOGENS				MAX
POLYAROMATIC HYDROCARBONS	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOUNCE	(kg)	CARCINOGENA	HOHOAHOINOGENS	NTG	IMAX.	AVG	MICA
ANTHRACENE	0.00115	0.00649	0.132	350	30	1	70	25,550	10,950	8.88E-07	5.03E-06	2.07E-06	1.17E-05
BENZO(A)ANTHRACENE	0.00206	0.00741	0.132	350	30	1	70	25,550	10,950	1.60E-06	5.74E-06	3.73E-06	1.34E-05
BENZO(A)PYRENE	0.00134	0.00456	0.132	. 350	30	1	70	25,550	10,950	1.04E-06	3.53E-06	2.42E-06	8.25E-06
BENZO(E)PYRENE	0.00470	0.01320	0.132	350	30	1	70	25,550	10,950	3.64E-06	1.02E-05	8.49E-06	2.39E-05
CHRYSENE	0.00420	0.00948	0.132	350	30	1	70	25,550	10,950	3.26E-06	7.35E-06	7.60E-06	1.71E-05
FLUORANTHENE	0.00997	0.02700	0.132	350	30	1	70	25,550	10,950	7.72E-06	2.09E-05	1.80E-05	4.88E-05
PERYLENE	0.00193	0.00420	0.132	350	30	1	70	25,550	10,950	1.49E-06	3.25E-06	3.49E-06	7.59E-06
PHENANTHRENE	0.00353	0.01320	0.132	350	30	1	70	25,550	10,950	2.73E-06	1.02E-05	6.38E-06	2.39E-05
PYRENE	0.00949	0.02400	0.132	350	30	1	70	25,550	10,950	7.36E-06	1.86E-05	1.72E-05	4.34E-05
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.02153	0.06002	0.132	350	30	1	70	25,550	10,950	1.67E-05	4.65E-05	3.89E-05	1.09E-04

TABLE 3-23
CONSUMPTION OF MUSSELS CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI- MUM	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGINO	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS													
ALUMINUM	34.3034	53.7030	0.381	365	30	1	70	25,550	10,950	8.00E-02	1.25E-01	1.87E-01	2.92E-01
ARSENIC	0.9480	1.2800	0.381	365	30	1	70	25,550	10,950	2.21E-03	2.99E-03	5.16E-03	6.97E-03
CADMIUM	0.1666	0.2025	0.381	365	30	1	70	25,550	10,950	3.89E-04	4.72E-04		
CHROMIUM	0.4248	0.5031	0.381	365	30	1	70	25,550	10,950	9.91E-04	1.17E-03	2.31E-03	2.74E-03
COPPER	0.6797	0.7830	0.381	365	30	1	70	25,550	10,950	1.59E-03	1.83E-03	3.70E-03	4.26E-03
IRON	68.3140	102.2600	0.381	365	30	1	70	25,550	10,950	1.59E-01	2.39E-01	3.72E-01	5.57E-01
LEAD	0.8230	1.3500	0.381	365	30	1	70	25,550	10.950	1.92E-03	3.15E-03		7.35E-03
MANGANESE	1.2728	1.6335	0.381	365	30	1	70	25,550	10.950	2.97E-03	3.81E-03	6.93E-03	8.89E-03
MERCURY	0.0611	0.0864	0.381	365	30	1	70	25,550	10,950	1.42E-04	2.02E-04	3.32E-04	4.70E-04
NICKEL	0.1946	0.2925	0.381	365	30	1	70	25,550	10,950	4.54E-04	6.82E-04	1.06E-03	1.59E-03
SILVER	0.0162	0.0214	0.381	365	30	1	70	25,550	10,950	3.78E-05	4.99E-05		1.16E-04
ZINC	12.2544	18.9000	0.381	365	30	1	70	25,550	10,950	2.86E-02		6.67E-02	
PESTICIDES								·					
ALDRIN	0.00085	0.00377	0.381	365	30	1	70	25,550	10,950	1.99E-06	8.80E-06	4.63E-06	2.05E-05
ALPHA-CHLORDANE	0.00078	0.00262	0.381	365	30	1	70	25,550	10,950	1.81E-06	6.11E-06		1.43E-05
HEXACHLOROBENZENE	0.00113	0.00548	0.381	365	30	1	70	25.550	10.950	2.64E-06	1.28E-05	+	2.98E-05
TANS-NONACHLOR	0.00078	0.00265	0.381	365	30	1	70	25,550	10,950	1.83E-06	6.18E-06		1.44E-05
o,p'DDD	0.00045	0.00198	0.381	365	30	1	70	25,550	10.950	1.05E-06	4.57E-06		1.07E-05
p.p'-DOD	0.00254	0.00954	0.381	365	30	1	70	25.550	10.950	5.91E-06	2.23E-05		5.19E-05
p,p'-DDE	0.00276	0.01038	0.381	365	30	1	70	25,550	10,950	6.45E-06	2.42E-05		5.65E-05
p,p'-DDT	0.00228	0.00963	0.381	365	30	1	70	25,550	10,950	5.33E-06	2.25E-05		
POLYAROMATIC HYDROCARBONS	0.00220	0.0000	0.001	000		•	,,,	20,000	10,000	0.00E-00	E.EGE-00	1.242-03	0.246-00
BENZO(A)ANTHRACENE	0.00338	0.00741	0.381	365	30	1"	70	25,550	10.950	7.88E-06	1.73E-05	1.84E-05	4.03E-05
BENZO(A)PYRENE	0.00237	0.00456	0.381	365	30	1	70	25,550	10,950	5.54E-06	1.06E-05	+	2.48E-05
BENZO(E)PYRENE	0.00491	0.00787	0.381	365	30	 	70	25,550	10,950	1.14E-05		2.67E-05	4.17E-05
CHRYSENE	0.00477	0.00748	0.381	365	30	1	70	25,550	10,950	1.14E-05	2.21E-05	2.60E-05	5.16E-05
FLUORANTHENE	0.01084	0.02210	0.381	365	30	-	70	25,550	10,950	2.53E-05	5.16E-05	5.90E-05	1.20E-04
PERYLENE	0.00189	0.00403	0.381	365	30	<u>'</u>	70	25,550	10,950	4.41E-06	9.40E-06	1.03E-05	2.19E-05
PHENANTHRENE	0.00486	0.01320	0.381	365	30	1	70	25,550	10,950	1.13E-05	3.08E-05	2.65E-05	7.18E-05
PYRENE	0.01071	0.02080	0.381	365	30	1	70	25,550				5.83E-05	
POLYCHLORINATED BIPHENYLS (PCBs)	0.010/1	0.02080	0.331	305	30	<u>'</u>	,0	29,550	10,950	£.50E-05	4.00E=05	5.63E-05	1.13E-04
TOTAL PCBs (AROCHLOR)	0.01730	0.02330	0.381	365	30	1	70	25.550	10.050	4.04E-05	E 44E_05	9.42E-05	1 275.04

TABLE 3-24
CONSUMPTION OF MUSSELS CAUGHT AROUND SEAVEY ISLAND FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-				FRACTION INGESTED FROM		AVERAGING	G TIME (days)	POT	RONIC DA	ILY	
	AGE	MUM	INTAKE	EXPOSURE	EXPOSURE	CONTAM-	BODY						
The effective for the first specific of the control	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS												1	
ALUMINUM	28.1933	58.9860	0.381	365	30	1	70	25,550	10,950	6.58E-02	1.38E-01	1.53E-01	3.21E-01
ARSENIC	0.7221	1.3500	0.381	365	30	1	70	25,550	10,950	1.68E-03	3.15E-03	3.93E-03	7.35E-03
CADMIUM	0.2141	0.3432	0.381	365	30	1	70	25,550	10.950	4.99E-04	8.01E-04	1.17E-03	1.87E-03
CHROMIUM	0.3694	0.4884	0.381	365	30	1	70	25,550	10,950	8.62E-04	1.14E-03	2.01E-03	
COPPER	0.8679	3.1654	0.381	365	30	1	70	25,550	10,950	2.02E-03	7.38E-03	4.72E-03	1.72E-02
IRON	63.4179	128.7000	0.381	365	30	1	70	25,550	10,950	1.48E-01	3.00E-01	3.45E-01	7.00E-01
LEAD	1.0204	3.1200	0.381	365	30	1	70	25,550	10,950	2.38E-03	7.28E-03	5.55E-03	1.70E-02
MANGANESE	1.7297	8.1360	0.381	365	30	1	70	25,550	10.950	4.03E-03	1.90E-02	9.41E-03	4.43E-02
MERCURY	0.0463	0.1096	0.381	365	30	1	70	25.550	10.950	1.08E-04	2.56E-04	2.52E-04	5.97E-04
NICKEL	0.1930	0.3510	0.381	365	30	1	70	25,550	10,950	4.50E-04	8.19E-04	1.05E-03	1.91E-03
SILVER	0.0242	0.2904	0.381	365	30	1	70	25,550	10.950	5.64E-05	6.77E-04	1.32E-04	1.58E-03
ZINC	11.9847	25.0860	0.381	365	30	1	70	25,550	10,950	2.80E-02		6.52E-02	
PESTICIDES													1.07 2 01
ALDRIN	0.00017	0.00045	0.381	365	30	1	70	25,550	10.950	4.01E-07	1.05E-06	9.36E-07	2.45E-06
ALPHA-CHLORDANE	0.00026	0.00081	0.381	365	30	1	70	25,550	10.950	5.95E-07	1.90E-06	1.39E-06	4.43E-06
HEPTACHLOR EPOXIDE	0.00003	0.00025	0.381	365	30	1	70	25.550	10,950	7.70E-08	5.90E-07	1.80E-07	1.38E-06
LINDANE (GAMMA-BHC)	0.00024	0.00414	0.381	365	30	1	70	25,550		5.55E-07	9.66E-06	1.30E-06	2.25E-05
TRANS-NONACHLOR	0.00025	0.00055	0.381	365	30	1	70	25,550	10,950	5.85E-07	1.28E-06	1.37E-06	2.99E-06
o,p'-DDD	0.00013	0.00082	0.381	365	30	1	70	25,550		3.10E-07		7.24E-07	
o,p'-DDE	0.00009	0.00017	0.381	365	30	1	70	25.550	10,950	1.98E-07	4.01E-07	4.63E-07	9.36E-07
o,p'-DDT	0.00039	0.00347	0.381	365	30	1	70	25,550		9.12E-07		2.13E-06	1.89E-05
p,p'-DDD	0.00086	0.00228	0.381	365	30	1	70	25.550		2.01E-06	5.31E-06	4.69E-06	1.24E-05
p,p'-DDE	0.00107	0.00203	0.381	365	30	1	70	25,550			4.74E-06	5.81E-06	1.11E-05
p,p'-DDT	0.00133	0.00709	0.381	365	30	1	70	25,550		3.11E-06		7.26E-06	3.86E-05
POLYAROMATIC HYDROCARBONS						,		20,000	10,800	3.11E-00	1.00L-05	7.202-00	3.80=-03
ANTHRACENE	0.00173	0.00649	0.381	365	30	1	70	25,550	10.050	4.04E-06	1 51E 05	0.425.00	2 525 05
BENZO(E)PYRENE	0.00356	0.00765	0.381	365	30	1	70	25,550				1.94E-05	3.53E-05 4.16E-05
CHRYSENE	0.00373	0.00726	0.381	365	30	1	70	25,550		8.70E-06	1.78E-05 1.69E-05		4.16E-05 3.95E-05
FLUORANTHENE	0.00886	0.01395	0.381	365	30	1	70	25,550					
PERYLENE	0.00190	0.00420	0.381	365	30	<u>-</u>	70	25,550	- · · · · · · · · · · · · · · · · · · ·			4.82E-05 1.03E-05	7.59E-05
PHENANTHRENE	0.00349	0.00564	0.381	365	30	<u>'</u>	70	25,550			1.32E-05	1.90E-05	2.29E-05
PYRENE	0.00805	0.01328	0.381	365	30	1	70	25,550					3.07E-05
POLYCHLORINATED BIPHENYLS (PCBs)	3.0000	0.01020	0.001	505	30		70	29,330	10,950	1.665-05	3.10E-05	4.38E-05	7.23E-05
TOTAL PCBs (AROCHLOR)	0.01963	0.04847	0.381	365	30	1	70	25,550	10.050	4 50 E 05	1 125 04	1.07E 04	0.645.64
	0.01003	0.04047	0.301	303			/0	25,550	10,950	4.58E-05	1.13E-04	1.07E-04	2.64E-04

TABLE 3-25
CONSUMPTION OF MUSSELS CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER- AGE	MAXI-	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGINO	3 TIME (days)		ENTIAL CH AKE (mg/kg/		ILY .
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS													7
ALUMINUM	30.5080	46.9800	0.381	365	30	1	70	25,550	10,950	7.12E-02	1.10E-01	1.66E-01	2.56E-01
ARSENIC	1.1338	2.2000	0.381	365	30	1	70	25,550	10,950	2.64E-03	5.13E-03	6.17E-03	1.20E-02
CADMIUM	0.2311	0.2904	0.381	365	30	1	70	25,550	10,950	5.39E-04	6.77E-04	1.26E-03	1.58E-03
CHROMIUM	0.4518	0.6040	0.381	365	30	1	70	25,550	10,950	1.05E-03	1.41E-03	2.46E-03	3.29E-03
COPPER	0.8747	1.2684	0.381	365	30	1	70	25,550	10,950	2.04E-03	2.96E-03	4.76E-03	6.90E-03
IRON	65.8938	96.5600	0.381	365	30	1	70	25,550	10,950	1.54E-01	2.25E-01	3.59E-01	5.26E-01
LEAD	1.1333	1.8570	0.381	365	30	1	70	25,550	10,950	2.64E-03	4.33E-03	6.17E-03	1.01E-02
MANGANESE	1.9280	5.6927	0.381	365	30	1	70	25,550	10,950	4.50E-03	1.33E-02	1.05E-02	3.10E-02
MERCURY	0.0375	0.0581	0.381	365	30	1	70	25,550	10,950	8.76E-05	1.36E-04		3.18E-04
NICKEL	0.2497	0.4681	0.381	365	30	1	70	25,550	10,950	5.82E-04	1.09E-03	1.36E-03	2.55E-03
SILVER	0.1025	0.4077	0.381	365	30	1	70	25,550	10,950	2.39E-04	9.51E-04	5.58E-04	L
ZINC	13.8689	18.4800	0.381	365	30	1	70	25,550	10,950	3.24E-02	4.31E-02	7.55E-02	1.01E-01
PESTICIDES					<u> </u>								
ALDRIN	0.00018	0.00036	0.381	365	30	1	70	25,550	10,950	4.15E-07	8.42E-07	9.69E-07	1.96E-06
ALPHA-CHLORDANE	0.00054	0.00115	0.381	365	30	1	70	25,550	10.950	1.25E-06	2.69E-06	2.92E-06	6.28E-06
HEPTACHLOR	0.00008	0.00002	0.381	365	30	1	70	25,550	10,950	1.35E-07	4.67E-08	3.16E-07	1.09E-07
HEPTACHLOR EPOXIDE	0.00003	0.00001	0.381	365	30	1	70	25,550	10,950	7.23E-08	1.40E-08	1.69E-07	
HEXACHLOROBENZENE	0.00010	0.00003	0.381	365	30	1	70	25,550	10,950	2.24E-07	7.70E-08	5.23E-07	1.80E-07
LINDANE (GAMMA-BHC)	0.00006	0.00015	0.381	365	30	1	70	25,550	10,950		3.59E-07	3.05E-07	8.38E-07
MIREX	0.00007	0.00015	0.381	365	30	1	70	25,550	10,950	1.61E-07	3.45E-07	3.78E-07	8.06E-07
TRANS-NONACHLOR	0.00048	0.00121	0.381	365	30	1	70	25,550	10,950	1.12E-06	2.81E-06	2.62E-06	6.56E-06
o,p'-DDD	0.00041	0.00137	0.381	365	30	1	70	25,550	10,950		3.18E-06	2.20E-06	
o,p'-DDE	0.00007	0.00009	0.381	365	30	1	70	25,550	10,950	1.73E-07	1.98E-07	4.03E-07	4.63E-07
o,p'-DDT	0.00024	0.00061	0.381	365	30	1	70	25,550	10.950	5.48E-07	1.43E-06		3.34E-06
p,p'-DDD	0.00256	0.00705	0.381	365	30	1	70	25,550	10,950	5.98E-06	1.64E-05		
p.p'-DDE	0.00173	0.00457	0.381	365	30	1	70	25,550	10.950	4.04E-06	1.07E-05	9.42E-06	
p.p'-DDT	0.00102	0.00229	0.381	365	30	1	70	25,550	10,950		5.35E-08	5.53E-06	1.25E-05

TABLE 3-25
CONSUMPTION OF MUSSELS CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI- MUM	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGING	a TIME (days)	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)			
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	INOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(daye/yr)	(years)	SOURCE	(kg)	CARCINOGENS	OGENS NONCARCINOGENS		MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS													
BENZO(A)ANTHRACENE	0.00220	0.00602	0.381	365	30	1	70	25,550	10,950	5.13E-06	1.40E-05	1.20E-05	3.28E-05
BENZO(E)PYRENE	0.00642	0.01320	0.381	365	30	1	70	25,550	10,950	1.50E-05	3.08E-05	3.49E-05	7.18E-05
CHRYSENE	0.00462	0.00900	0.381	365	30	1	70	25,550	10,950	1.08E-05	2.10E-05	2.51E-05	4.90E-05
FLUORANTHENE	0.01121	0.02700	0.381	365	30	1	70	25,550	10,950	2.62E05	6.30E-05	6.10E-05	1.47E-04
PERYLENE	0.00204	0.00392	0.381	365	30	1	70	25,550	10,950	4.76E-06	9.14E-06	1.11E-05	2.13E-05
PHENANTHRENE	0.00275	0.00525	0.381	365	30	1	70	25,550	10,950	6.42E-06	1.22E-05	1.50E-05	2.86E-05
PYRENE	0.01107	0.02400	0.381	365	30	1	70	25,550	10,950	2.58E-05	5.60E-05	6.03E-05	1.31E-04
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.02843	0.06000	0.381	365	30	1	70	25,550	10, 9 50	6.63E-05	1.40E-04	1.55E-04	3.27E-04

TABLE 3-26
CONSUMPTION OF MUSSELS CAUGHT AT YORK HARBOR SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	ВОДУ	AVERAGIN	G TIME (days)	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)					
	CONC.	CONC.	RATE	FREQUENCY		INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS		
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(daya/yr)	(vears)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX		
INOPCANICS	(**************************************	(99/	((44)	0	,	(**87				1				
ALUMINUM	24.9303	34.0340	0.381	365	30	1	70	25,550	10,950	5.82E-02	7.94E-02	1.36E-01	1.85E-01		
ARSENIC	0.5513	0.9700	0.381	365	30	1	70	25,550	10,950	1.29E-03	2.26E-03	3.00E-03	5.28E-03		
CADMIUM	0.1914	0.2156	0.381	365	30	1	70	25,550	10,950	4.46E-04	5.03E-04	1.04E-03	1.17E-03		
CHROMIUM	0.2633	0.3388	0.381	365	30	1	70	25,550	10,950	6.14E-04	7.90E-04	1.43E-03	1.84E-03		
COPPER	0.8603	0.9548	0.381	365	30	1	70	25,550	10,950	2.01E-03	2.23E-03	4.68E-03	5.20E-03		
IRON	50.7650	62.0600	0.381	365	30	1	70	25,550	10,950	1.18E-01	1.45E-01	2.76E-01	3.38E-01		
LEAD	0.2625	0.3850	0.381	365	30	1	70	25,550	10,950	6.12E-04	8.98E-04	1.43E-03	2.10E-03		
MANGANESE	1.1895	1.4500	0.381	365	30	1	70	25,550	10,950	2.77E-03	3.38E-03	6.47E-03	7.89E-03		
MERCURY	0.0423	0.0678	0.381	365	30	1	70	25,550	10,950	9.86E-05	1.58E-04	2.30E-04	3.69E-04		
NICKEL	0.1549	0.2002	0.381	365	30	1	70	25,550	10,950	3.61E-04	4.67E-04	8.43E-04	1.09E-03		
SILVER	0.0133	0.0181	0.381	365	30	1	70	25,550	10,950	3.11E-05		7.25E-05			
ZINC	11.3873	12.9630	0.381	365	30	1	70	25,550	10,950	2.66E-02	3.02E-02	6.20E-02	7.06E-02		
PESTICIDES															
ALDRIN	0.00009	0.00020	0.381	365	30	1		25,550	10,950		4.62E-07	4.72E-07			
ALPHA-CHLORDANE	0.00039	0.00101	0.381	365	30	<u> </u>	70	25,550	10,950	8.98E-07	2.36E-06				
HEPTACHLOR	0.00023	0.00077	0.381	365	30	1	70	25,550	10,950	5.36E-07	1.78E-06	1.25E-06	4.16E-06		
TRANS-NONACHLOR	0.00057	0.00117	0.381	365	30	1	70	25,550	10,950	1.34E-06	2.72E-06	3.12E-06	6.35E-06		
o,p'-DDD	0.00031	0.00053	0.381	365	30	1	70	25,550	10,950	7.14E-07	1.24E-06	1.67E-06	2.88E-06		
o,p'-DDT	0.00010	0.00023	0.381	365	30	1	70	25,550	10,950	2.39E-07	5.48E-07	5.57E-07	1.28E-06		
p,p'-DDD	0.00078	0.00100	0.381	365	30	1	70	25,550	10,950	1.83E-06	2.33E-06	4.26E-06	5.43E-06		
p.p'-DDE	0.00073	0.00089	0.381	365	30	1	70	25,550	10,950	1.70E-06	2.09E-08	3.97E-06	4.87E-06		
p.p'-DDT	0.00110	0.00296	0.381	365	30	1	70	25,550	10,950	2.58E-06	6.90E-06	6.01E-06	1.61E-05		
POLYAROMATIC HYDROCARBONS															
FLUORANTHENE	0.00501	0.00705	0.381	365	30	1	70	25,550	10,950	1.17E-05	1.64E-05	2.72E-05	3.84E-05		
PHENANTHRENE	0.00345	0.00645	0.381	365	30	1	70	25,550	10,950	8.05E-06	1.50E-05		3.51E-05		
PYRENE	0.00321	0.00570	0.381	365	30	1	70	25,550	10,950	7.48E-06	1.33E-05	1.74E-05	3.10E-05		
POLYCHLORINATED BIPHENYLS (PCBs)															
TOTAL PCBs (AROCHLOR)	0.01367	0.01663	0.381	365	30	1	70	25,550	10,950	3.19E-05	3.88E-05	7.44E-05	9.05E-05		

TABLE 3-27
CONSUMPTION OF MUSSELS CAUGHT AT THE GREAT BAY ESTUARY SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGIN	G TIME (days)		ENTIAL CH KE (mg/kg/	RONIC DAI day)	LY
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	ENS	NONCARO	INOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS							,						
ALUMINUM	44.0878	66.2340	0.381	365	30	1	70	25,550	10,950	1.03E-01	1.55E-01	2.40E-01	3.61E-01
ARSENIC	1.0940	1.7800	0.381	. 365	30	1	70	25,550	10,950	2.55E-03	4.15E-03	5.95E-03	9.69E-03
CADMIUM	0.2761	0.4214	0.381	365	30	1	70	25,550	10,950	6.44E-04	9.83E-04	1.50E-03	2.29E-03
CHROMIUM	0.6153	0.8428	0.381	365	30	1	70	25,550	10,950	1.44E-03	1.97E-03	3.35E-03	4.59E-03
COPPER	0.9787	1.1220	0.381	365	30	1	70	25,550	10,950	2.28E-03	2.62E-03	5.33E-03	6.11E-03
IRON	88.9800	121.9800	0.381	365	30	1	70	25,550	10,950	2.08E-01	2.85E-01	4.84E-01	6.64E-01
LEAD	0.5278	0.6610	0.381	365	30	1	70	25,550	10,950	1.23E-03	1.54E-03	2.87E-03	3.60E-03
MANGANESE	5.7381	11.2700	0.381	365	30	1	70	25,550	10,950	1.34E-02	2.63E-02	3.12E-02	6.13E-02
MERCURY	0.0402	0.0570	0.381	365	30	1	70	25,550	10,950	9.38E-05	1.33E-04	2.19E-04	3.10E-04
NICKEL	0.2703	0.3078	0.381	365	30	1	70	25,550	10,950	6.30E-04	7.18E-04	1.47E-03	1.68E-03
SILVER	0.2063	0.2744	0.381	365	30	1	70	25,550	10,950	4.81E-04		1.12E-03	1.49E-03
ZINC	14.7860	18.7440	0.381	365	30	1	70	25,550	10,950	3.45E-02	4.37E-02	8.05E-02	1.02E-01
PESTICIDES													
ALDRIN	0.00026	0.00030	0.381	365	30	1	70	25,550	10,950	6.13E-07	6.88E-07	1.43E-06	1.61E-06
ALPHA-CHLORDANE	0.00072	0.00097	0.381	385	30	1	70	25,550	10,950	1.68E-08	2.26E-06		
LINDANE (GAMMA-BHC)	0.00013	0.00051	0.381	365	30	1	70	25,550	10,950	3.08E-07	1.19E-06	7.18E-07	2.78E-06
TRANS-NONACHLOR	0.00059	0.00087	0.381	365	30	1	70	25,550	10,950	1.38E-06	2.02E-06		4.72E-06
o.p'-DDD	0.00027	0.00050	0.381	365	30	1	70	25,550	10,950	6.30E-07	1.16E-06	1.47E-06	2.70E-06
o,p'-DDT	0.00009	0.00024	0.381	365	30	1	70	25,550	10,950	2.10E-07	5.69E-07	4.90E-07	1.33E-06
p,p'-DDD	0.00165	0.00249	0.381	365	30	1	70	25,550	10,950	3.84E-06	5.82E-06	8.95E-06	1.36E-05
p.p'-DDE	0.00241	0.00449	0.381	365	30	1	70	25,550	10,950	5.61E-06	1.05E-05		4
p,p'-DDT	0.00063	0.00161	0.381	365	30	1	70	25,550	10,950	1.47E-06	3.75E-06	3.44E-06	8.76E-06
POLYAROMATIC HYDROCARBONS									,				
BENZO(A)ANTHRACENE	0.00592	0.01200	0.381	365	30	1	70	25,550	10,950			3.22E-05	
BENZO(A)PYRENE	0.00693	0.01200	0.381	365	30	1	70	25,550	10,950	1.62E-05		3.77E-05	
BENZO(E)PYRENE	0.01504	0.02800	0.381	365	30	1	70	25,550	10,950	3.51E-05	6.53E-05	8.18E-05	1.52E-04
CHRYSENE	0.00914	0.01800	0.381	365	30	1	70	25,550	10,950	2.13E-05	3.73E-05	4.98E-05	8.71E-05
FLUORANTHENE	0.01168	0.01800	0.381	365	30	1	70	25,550	10,950	2.73E-05	4.20E-05		9.80E-05
PERYLENE	0.00723	0.01100	0.381	365	30	1	70	25,550	10,950	1.69E-05	2.57E-05		5.99E-05
PHENANTHRENE	0.00158	0.00418	0.381	365	30	1	70	25,550	10,950	3.69E-06	9.75E-06	8.62E-06	2.28E-05
PYRENE	0.01756	0.03500	0.381	365	30	1	70	25,550	10,950	4.10E-05	8.16E-05	9.56E-05	1.91E-04
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.00901	0.03629	0.381	365	30	1	70	25,550	10,950	2.10E-05	8.47E-05	4.90E-05	1.98E-04

Consumption of Locally Caught Flounder Fillet Recreational Exposures, Off-Shore Impacts Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Intake (mg/kg - day) = $\frac{CF \times IR \times FI \times EF \times ED}{BW \times AT}$

CF	=	Contaminant concentration in fish (mg/kg)
IR	=	Ingestion Rate (kg/day)
FI	==	Fraction Ingested from Contaminated Source (unitless)
EF	=	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
BW	=	Body Weight (kg)
ΑT	=	Averaging Time (period over which exposure is averaged - days)

CF	=	Site-specific measured or modeled value
IR	=	.054 kg/day (USEPA 1991)
FI	=	1.0 (Assumed)
EF	=	350 days/year (USEPA 1991)
ED	=	30 years (USEPA 1991)
BW	=	70 kg (USEPA 1991)
ΑT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a)
		365 days/year x 70 years for carcinogenic effects (USEPA, December 1989a)

TABLE 3-28
CONSUMPTION OF FLOUNDER FILLET CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-				FRACTION INGESTED FROM		AVERAGIN	3 TIME (daye)	· Daniel Commence	POTENTIAL CHRONIC DA INTAKE (mg/kg/day)			
	AGE	MUM	INTAKE	EXPOSURE	15-97-90-96-56	CONTAM-	BODY			<u> </u>		1		
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	CINOGENS	
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX	
INORGANICS														
ALUMINUM	1.5911	2.6796	0.054	350	30	1	70	25,550	10,950	5.04E-04	8.50E-04	1.18E-03	1.98E-03	
ARSENIC	1.4733	1.7500	0.054	350	30	1	70	25,550	10,950	4.67E-04	5.55E-04	1.09E-03	1.29E-03	
CADMIUM	0.0045	0.0117	0.054	350	30	1	70	25,550	10,950	1.42E~06	3.71E-06	3.31E-06	8.65E-06	
CHROMIUM	0.1852	0.3250	0.054	350	30	1	70	25,550	10,950	5.87E-05	1.03E-04	1.37E-04	2.40E-04	
COPPER	0.2342	0.3510	0.054	350	30	1	70	25,550	10,950	7.42E-05	1.11E-04	1.73E-04	2.60E-04	
IRON	3.9900	6.4300	0.054	350	30	1	70	25,550	10,950	1.26E-03	2.04E-03	2.95E-03	4.76E-03	
LEAD	0.0388	0.0950	0.054	350	30	1	70	25,550	10,950	1.23E-05	3.01E-05	2.87E-05	7.03E-05	
MANGANESE	0.2920	0.7750	0.054	350	30	1	70	25,550	10,950	9.26E-05	2.46E-04	2.16E-04	5.73E-04	
MERCURY	0.0219	0.0351	0.054	350	30	1	70	25,550	10,950	6.94E-06	1.11E-05	1.62E-05	2.60E-05	
NICKEL	0.1444	0.1766	0.054	350	30	1	70	25,550	10,950	4.58E-05	5.80E-05	1.07E-04	1.31E-04	
SILVER	0.0059	0.0142	0.054	350	30	1	70	25,550	10,950	1.86E-06	4.50E-06	4.33E-06	1.05E-05	
ZINC	7.5180	10.5250	0.054	350	30	1	70	25,550	10,950	2.38E-03	3.34E-03	5.56E-03	7.79E-03	
PESTICIDES														
ALDRIN	0.00026	0.00060	0.054	350	30	1	70	25,550	10,950	8.33E-08	1.90E-07	1.94E-07	4.44E-07	
ALPHA-CHLORDANE	0.00030	0.00085	0.054	350	30	1	70	25,550	10,950	9.62E-08	2.70E-07	2.25E-07	6.30E-07	
HEPTACHLOR	0.00020	0.00060	0.054	350	30	1	70	25,550	10,950	6.34E-08	1.90E-07	1.48E-07	4.44E-07	
HEPTACHLOR EPOXIDE	0.00017	0.00060	0.054	350	30	1	70	25,550	10,950	5.27E-08	1.90E-07	1.23E-07	4.44E-07	
HEXACHLOROBENZENE	0.00074	0.00240	0.054	350	30	1	70	25,550	10,950	2.34E-07	7.61E-07	5.46E-07	1.78E-06	
LINDANE (GAMMA-BHC)	0.00018	0.00060	0.054	350	30	1	70	25,550	10,950	5.65E-08	1.90E-07	1.32E-07	4.44E-07	
MIREX	0.00020	0.00060	0.054	350	30	1	70	25,550	10,950	6.29E-08	1.90E-07	1.47E-07	4.44E-07	
TRANS-NONACHLOR	0.00059	0.00133	0.054	350	30	1	70	25,550	10,950	1.88E-07	4.23E-07	4.38E-07	9.87E-07	
o.p'-DDD	0.00027	0.00060	0.054	350	30	1	70	25,550	10.950	8.62E-08	1.90E-07	2.01E-07	4.44E-07	
o,p'-DDE	0.00021	0.00060	0.054	350	30	1	70	25,550	10,950	6.72E-08	1.90E-07	1.57E-07	1	
o,p'-DDT	0.00041	0.00089	0.054	350	30	1	70	25,550	10,950		2.82E-07	3.06E-07	6.57E-07	
p.p'-DDD	0.00072	0.00276	0,054	350	30	1	70	25,550	10,950		8.75E-07	5.35E-07		
p,p'-DDE	0.00299	0.00943	0.054	350	30	1	70	25,550	L	9.48E-07	2.99E-06	2.21E-06	1	
p,p'-DDT	0.00125	0.00531	0.054	350	30	1	70	25,550	10.950	3.97E-07	1.68E-06	9.26E-07		
POLYCHLORINATED BIPHENYLS (PCBs)												1		
TOTAL PCBs (AROCHLOR)	0.03371	0.07987	0.054	350	30	1	70	25,550	10.950	1.07E-05	2.53E-05	2.49E-05	5.91E-05	

TABLE 3-29
CONSUMPTION OF FLOUNDER FILLET CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGINO	a TIME (days)		ENTIAL CH IKE (mg/kg/		ILY
	CONC.	CONC.	RATE		DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR/	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS	(99)	(99)	(var ar))	(32)4)	(you a)	CODITOL	(vA)	CAHOINOGENO	HOHOMHORENS	MAG	I MI A	AVG	MIACA
ALUMINUM	0.9030	0.9030 *	0.054	350	30	1	70	25,550	10.950	2.86E-04	2 88F_04	R RRE_OA	6.68E-04
ARSENIC	1.3300	1.3300 *	0.054	350	30	1	70	25,550	10,950	4.22E-04		9.84E-04	
CHROMIUM	0.1204	0.1204 *	0.054	350	30	1	70	25,550	10,950	3.82E-05		8.91E-05	
COPPER	0.1483	0.1483 *	0.054	350	30	1	70	25,550	10,950	4.70E-05	4.70E-05	1.10E-04	1.10E-04
IRON	2.0200	2.0200	0.054	350	30	1	70	25,550	10.950	6.40E-04	6.40E-04	1.49E-03	
LEAD	0.0110	0.0110 *	0.054	350	30	1	70	25,550	10.950	3.49E-06		8.14E-06	11111
MANGANESE	0.0839	0.0839 *	0.054	350	30	1	70	25,550	10,950	2.66E-05		6.21E-05	
MERCURY	0.0193	0.0193 *	0.054	350	30	1	70	25,550	10.950	6.12E-06	6.12E-06	1.43E-05	1
NICKEL	0.1161	0.1161 *	0.054	350	30	1	70	25,550	10,950	3.68E-05		8.59E-05	8.59E-05
SILVER	0.0086	0.0086 *	0.054	350	30	1	70	25,550	10,950	2.73E-06	2.73E-06	6.36E-06	6.36E-06
ZINC	5.2460	5.2460 *	0.054	350	30	1	70	25,550	10,950	1.66E-03	1.66E-03	3.88E-03	3.88E-03
PESTICIDES													
ALDRIN	0.00037	0.00058	0.054	350	30	1	70	25,550	10,950	1.17E-07	1.84E-07	2.73E-07	4.29E-07
ALPHA-CHLORDANE	0.00016	0.00016 *	0.054	350	30	1	70	25,550	10,950	4.92E-08	5.13E-08	1.15E-07	1.20E-07
HEPTACHLOR	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.71E-08	4.71E-08	1.10E-07	1.10E-07
HEPTACHLOR EPOXIDE	0.00003	0.00003 *	0.054	350	30	1	70	25,550	10,950	9.67E-09	1.10E-08	2.26E-08	2.57E-08
HEXACHLOROBENZENE	0.00013	0.00016	0.054	350	30	1	70	25,550	10,950	4.09E08	5.03E-08	9.55E-08	1.17E-07
LINDANE (GAMMA-BHC)	0.00008	0.00007	0.054	350	30	1	70	25,550	10,950	1.98E-08	2.32E-08	4.62E-08	5.42E-08
MIREX	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.71E-08	4.71E-08	1.10E-07	1.10E-07
TRANS-NONACHLOR	0.00023	0.00031	0.054	350	30	1	70	25,550	10,950	7.34E-08	9.98E-08	1.71E-07	2.33E-07
o,p'-DDD	0.00015	0.00015 *	0.054	350	30	1	70	25,550	10,950	4.71E-08	4.71E-08	1.10E-07	1.10E-07
o,p'-DDE	0.00014	0.00015	0.054	350	30	1.	70	25.550	10.950	4.46E-08	4.71E-08	1.04E-07	1.10E-07
o,p'-DDT	0.00052	0.00089	0.054	350	30	1	70	25,550	10,950	1.64E-07	2.82E-07	3.84E-07	6.57E-07
p.p'-DDD	0.00010	0.00015	0.054	350	30	1	70	25,550	10,950	3.20E-08	4.71E-08	7.47E-08	1.10E-07
p,p'-DDE	0.00067	0.00081	0.054	350	30	1	70	25,550	10,950	2.12E-07	2.57E-07	4.94E-07	6.00E-07
p.p'-DDT	0.00277	0.00531	0.054	350	30	1	70	25,550	10,950	8.78E-07	1.68E-06	2.05E-06	3.93E-06
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.01437	0.01845	0.054	350	30	1	70	25,550	10,950	4.55E-06	5.85E-06	1.06E-05	1.36E-05

NOTES:

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 3-30
CONSUMPTION OF FLOUNDER FILLET CAUGHT AROUND SEAVEY ISLAND RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGIN	G TIME (days)	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)					
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCAR	CINOGENS		
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX		
INORGANICS															
ALUMINUM	1.0850	1.2500	0.054	350	30	1	70	25,550	10,950	3.44E-04	3.96E-04	8.03E-04	9.25E-04		
ARSENIC	1.6850	1.7500	0.054	350	30	1	70	25,550	10,950	5.34E-04	5.55E-04	1.25E-03	1.29E-03		
СНВОМІИМ	0.2365	0.3250	0.054	350	30	1	70	25,550	10,950	7.50E-05	1.03E-04	1.75E-04	2.40E-04		
COPPER	0.2313	0.2425	0.054	350	30	1	70	25,550	10,950	7.33E-05	7.69E-05	1.71E-04	1.79E-04		
IRON	2.8350	3.7700	0.054	350	30	1	70	25,550	10,950	8.99E-04	1.20E-03	2.10E-03	2.79E-03		
LEAD	0.0555	0.0950	0.054	350	30	1	70	25,550	10,950	1.76E-05	3.01E-05	4.11E-05	7.03E-05		
MANGANESE	0.4205	0.7750	0.054	350	30	1	70	25,550	10,950	1.33E-04	2.46E-04	3.11E-04	5.73E-04		
MERCURY	0.0135	0.0220	0.054	350	30	1	70	25,550	10,950	4.28E-06	6.97E-06	9.99E-06	1.63E-05		
NICKEL	0.1385	0.1520	0.054	350	30	1	70	25,550	10,950	4.39E-05	4.82E-05	1.02E-04	1.12E-04		
ZINC	8.7125	10.5250	0.054	350	30	1	70	25,550	10,950	2.76E-03	3.34E-03	6.44E-03	7.79E-03		
PESTICIDES (MG/KG)															
ALDRIN	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.96E-07	4.44E-07		
ALPHA-CHLORDANE	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.98E-07	4.44E-07		
HEPTACHLOR	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.96E-07	4.44E-07		
HEPTACHLOR EPOXIDE	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.96E-07	4.44E-07		
HEXACHLOROBENZENE	0.00160	0.00240	0.054	350	30	1	70	25,550	10,950	5.07E-07	7.81E-07	1.18E-06	1.78E-06		
LINDANE (GAMMA-BHC)	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.98E-07	4.44E-07		
MIREX	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.96E-07	4.44E-07		
TRANS-NONACHLOR	0.00080	0.00110	0.054	350	30	1	70	25,550	10,950	2.54E-07	3.49E-07	5.92E-07	8.14E-07		
o,p'-DDD	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.96E-07	4.44E-07		
o,p'-DDE	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.96E-07	4.44E-07		
o,p'-DDT	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.96E-07	4.44E-07		
p,p'-DDD	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.96E-07	4.44E-07		
p.p'-DDE	0.00350	0.00530	0.054	350	30	1	70	25,550	10,950	1.11E-08	1.68E-06	2.59E-06	3.92E-06		
p,p'-DDT	0.00040	0.00060	0.054	350	30	1	70	25,550	10,950	1.27E-07	1.90E-07	2.96E-07	4.44E-07		
POLYCHLORINATED BIPHENYLS (PCBs)															
TOTAL PCBs (AROCHLOR)	0.04284	0.06245	0.054	350	30	1	70	25,550	10,950	1.36E-05	1.98E-05	3.17E-05	4.62E-05		

TABLE 3-31
CONSUMPTION OF FLOUNDER FILLET CAUGHT FROM CLARK'S ISLAND EMBAYMENT RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER- MAXI- AGE MUM INTAKE CONC. CONC. RATE			EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	BODY	AVERAGIN	G TIME (days)	重点的 医动脉管膜炎病	ENTIAL CH AKE (mg/kg/	IRONIC DAI	ILY.
医乳体 医原性性性 医皮肤	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	CINOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS													
ALUMINUM	2.1579	2.6796	0.054	350	30	1	70	25,550	10,950	6.84E-04	8.50E-04	1.60E-03	1.98E-03
ARSENIC	1.3800	1.6400	0.054	350	30	1	70	25,550	10,950	4.37E-04	5.20E-04	1.02E-03	1.21E-03
CADMIUM	0.0059	0.0117	0.054	350	30	1	70	25,550	10,950	1.88E-06	3.71E-06	4.38E-06	8.65E-06
СНЯОМІИМ	0.1725	0.2574	0.054	350	30	1	70	25,550	10,950	5.47E-05	8.16E-05	1.28E-04	1.90E-04
COPPER	0.2648	0.3510	0.054	350	30	1	70	25,550	10,950	8.39E-05	1.11E-04	1.96E-04	2.60E-04
IRON	5.4167	6.4300	0.054	350	30	1	70	25,550	10,950	1.72E-03	2.04E-03	4.01E-03	4.76E-03
LEAD	0.0370	0.0490	0.054	350	30	1	70	25,550	10,950	1.17E-05	1.55E-05	2.74E-05	3.62E-05
MANGANESE	0.2758	0.5850	0.054	350	30	1	70	25,550	10,950	8.74E-05	1.85E-04	2.04E-04	4.33E-04
MERCURY	0.0318	0.0351	0.054	350	30	1	70	25,550	10,950	1.00E-05	1.11E-05	2.33E-05	2.60E-05
NICKEL	0.1578	0.1766	0.054	350	30	1	70	25,550	10,950	5.00E-05	5.60E-05	1.17E-04	1.31E-04
SILVER	0.0065	0.0142	0.054	350	30	1	70	25,550	10,950	2.07E-06	4.50E-06	4.82E-06	1.05E-05
ZING	7.4790	9.6170	0.054	350	30	1	70	25,550	10,950	2.37E-03	3.05E-03	5.53E-03	7.11E-03
PESTICIDES						,							
ALDRIN	0.00012	0.00015	0.054	350	30	1	70	25,550	10,950	3.82E-08	4.76E-08	8.92E-08	1.11E-07
ALPHA-CHLORDANE	0.00036	0.00085	0.054	350	30	1	70	25,550	10,950	1.14E-07	2.70E-07	2.65E-07	6.30E-07
HEPTACHLOR	0.00012	0.00015	0.054	350	30	1	70	25,550	10,950	3.82E-08	4.76E-08	8.92E-08	1.11E-07
HEPTACHLOR EPOXIDE	0.00012	0.00015	0.054	350	30	1	70	25,550	10,950	3.82E-08	4.76E-08	8.92E-08	1.11E-07
HEXACHLOROBENZENE	0.00055	0.00117	0.054	350	30	1	70	25,550	10,950	1.76E-07	3.72E-07	4.10E-07	8.68E-07
LINDANE (GAMMA-BHC)	0.00010	0.00014	0.054	350	30	1	70	25,550	10,950	3.24E-08	4.37E-08	7.56E-08	1.02E-07
MIREX	0.00012	0.00015	0.054	350	30	1	70	25,550	10,950	3.71E-08	4.76E-08	8.66E-08	1.11E-07
TRANS-NONACHLOR	0.00072	0.00133	0.054	350	30	1	70	25,550	10,950	2.29E-07	4.23E-07	5.34E-07	9.87E-07
o,p'-DDD	0.00030	0.00046	0.054	350	30	1	70	25,550	10,950	9.42E-08	1.45E-07	2.20E-07	3.37E-07
o,p'-DDE	0.00015	0.00031	0.054	350	30	1	70	25,550	10,950	4.90E-08	9.76E-08	1.14E-07	2.28E-07
o,p'-DDT	0.00037	0.00083	0.054	350	30	1	70	25,550	10,950	1.18E-07	2.63E-07	2.75E-07	6.13E-07
p,p'-DDD	0.00137	0.00276	0.054	350	30	1	70	25,550	10,950	4.35E-07	8.75E-07	1.02E-06	2.04E-06
p.p'-DDE	0.00419	0.00943	0.054	350	30	1	70	25,550	10,950	1.33E-06		3.10E-06	6.98E-06
p,p'-DDT	0.00056	0.00080	0.054	350	30	1	70	25,550	10,950	1.78E-07	2.55E-07	4.16E-07	5.94E-07
POLYCHLORINATED BIPHENYLS (PCBs)									,,,,,,			1	1
TOTAL PCBs (AROCHLOR)	0.04052	0.07987	0.054	350	30	1	70	25,550	10.950	1.28E-05	2.53E-05	3.00E-05	5.91E-05

TABLE 3-32
CONSUMPTION OF FLOUNDER FILLET CAUGHT AT YORK HARBOR SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI~	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	Turbanian filtra	AVERAGIN	G TIME (days)	Francisco de la constantidad de	POTENTIAL CHRONIC DAILY INTAKÉ (mg/kg/day)					
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARO	INOGENS			
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX			
PESTICIDES											4_7					
ALPHA-CHLORDANE	0.00039	0.00039	0.054	350	30	1	70	25,550	10,950	1.24E-07	1.24E-07	2.88E-07	2.88E-07			
TRANS-NONACHLOR	0.00019	0.00019	0.054	350	30	1	70	25,550	10,950	6.02E-08	6.02E-08	1.41E-07	1.41E-07			
p,p'-DDD	0.00035	0.00035	0.054	350	30	1	70	25,550	10,950	1.11E-07	1.11E-07	2.59E-07	2.59E-07			
p.p'-DDE	0.00079	0.00079	0.054	350	30	1	70	25,550	10,950	2.50E-07	2.50E-07	5.84E-07	5.84E-07			
POLYCHLORINATED BIPHENYLS (PCBs)																
TOTAL PCBs (AROCHLOR)	0.01352	0.01414	0.054	350	30	1	70	25,550	10,950	4.29E-06	4.48E-06	1.00E-05	1.05E-05			

Consumption of Locally Caught Flounder Fillet For Subsistence Fishing Residential Exposures, Off-Site, Off-Shore Impacts Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Intake (mg/kg - day)	=	CF x IR x FI x EF x ED
		BW x AT

CF	=	Contaminant concentration in fish (mg/kg)
IR	=	Ingestion Rate (kg/day)
FI	=	Fraction Ingested from Contaminated Source (unitless)
EF	=	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
BW	=	Body Weight (kg)
ΑT	=	Averaging Time (period over which exposure is averaged - days)

CF	=	Site-specific measured or modeled value
IR	=	0.132 kg/day (USEPA 1991)
FI	=	1.0 (Assumed)
EF	=	350 days/year subsistence (USEPA 1991)
ED	=	30 years (USEPA 1991)
BW	=	70 kg (USEPA 1991)
AT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a)
		365 days/year x 70 years for carcinogenic effects (USEPA, December 1989a)

TABLE 3-33
CONSUMPTION OF FLOUNDER FILLET CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI-				FRACTION INGESTED FROM		AVERAGIN	G TIME (days)	1	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	AGE	MUM	INTAKE	EXPOSURE	EXPOSURE	CONTAM-	BODY	1 1 1 1 1 1 1 1 1							
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINO	GENS	NONCARCINOGENS			
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX		
INORGANICS							, 41				d				
ALUMINUM	1.5911	2.6796	0.132	350	30	1	70	25,550	10,950	1.23E-03	2.08E-03	2.88E-03	4.85E-03		
ARSENIC	1.4733	1.7500	0.132	350	30	1	70	25,550	10,950	1.14E-03	1.36E-03	2.66E-03	3.16E-03		
CADMIUM	0.0045	0.0117	0.132	350	30	1	70	25,550	10,950	3.47E-06	9.07E-06	8.09E-06	2.12E-05		
CHROMIUM	0.1852	0.3250	0.132	350	30	1	70	25,550	10,950			3.35E-04	I I		
COPPER	0.2342	0.3510	0.132	350	30	1	70	25,550	10,950	1.81E-04		4.23E-04			
IRON	3.9900	6.4300	0.132	350	30	1	70	25,550	10,950	3.09E-03	1		1.16E-02		
LEAD	0.0388	0.0950	0.132	350	30	1	70	25,550	1 .	3.01E-05		7.02E-05	1.72E-04		
MANGANESE	0.2920	0.7750	0.132	350	30	1	70	25,550				5.28E-04			
MERCURY	0.0219	0.0351	0.132	350	30	1	70	25,550	1	1	1	3.96E-05			
NICKEL	0.1444	0.1766	0.132	350	30	1	70	25,550	L			2.61E-04			
SILVER	0.0059	0.0142	0.132	350	30	1	70	25,550			L	1.06E-05			
ZINC	7.5180	10.5250	0.132	350	30	1	70	25,550	10,950	5.83E-03	8.18E-03	1.36E-02	1.90E-02		
PESTICIDES					_		,				,	,			
ALDRIN	0.00026	0.00060	0.132	350	30	1	70	25,550		 		4.75E-07	1.08E-06		
ALPHA-CHLORDANE	0.00030	0.00085	0.132	350	30	1 1	70	25,550	10,950	2.35E-07	6.59E-07	5.49E-07	1.54E-06		
HEPTACHLOR	0.00020	0.00060	0.132	350	30	1	70	25,550	10,950	1.55E-07	4.65E-07	3.61E-07	1.08E-06		
HEPTACHLOR EPOXIDE	0.00017	0.00060	0.132	350	30	1	70	25,550	10,950	1.29E-07	4.65E-07	3.00E-07	1.08E-06		
HEXACHLOROBENZENE	0.00074	0.00240	0.132	350	30	1	70	25,550	10,950	5.71E-07	1.86E-06	1.33E-06	4.34E-06		
LINDANE (GAMMA-BHC)	0.00018	0.00060	0.132	350	30	1	70	25,550	10,950	1.38E-07	4.65E-07	3.22E-07	1.08E-06		
MIREX	0.00020	0.00060	0.132	350	30	1	70	25,550	10,950	1.54E-07	4.65E-07	3.59E-07	1.08E-06		
TRANS-NONACHLOR	0.00059	0.00133	0.132	350	30	1	70	25,550	10,950	4.59E-07	1.03E-06	1.07E-06	2.41E-06		
o.p'-DDD	0.00027	0.00060	0.132	350	30	1	70	25,550	10.950	2.11E-07	4.65E-07	4.92E-07	1.08E-06		
o,p'-DDE	0.00021	0.00060	0.132	350	30	1	70	25,550	10.950	1.64E-07	4.65E-07	3.84E-07	1.08E-06		
o.p'-DDT	0.00041	0.00089	0.132	350	30	1	70	25,550	10.950			7.47E-07	1.61E-06		
p.p'-DDD	0.00072	0.00276	0.132	350	30	1	70	25,550	10.950	5.60E-07	 	1.31E-06	4.99E-06		
p,p'-DDE	0.00299	0.00943	0.132	350	30	1	70	25,550			7.31E-06		1.71E-05		
p,p'-DDT	0.00235	0.00531	0.132	350	30	1	70	25,550		 		2.26E-06			
	0.00125	0.00531	0.132	350	30	<u> </u>	, , ,	20,000	10,850	0.70E-07	7.11E-00	4.206-00	8.00E-00		
POLYCHLORINATED BIPHENYLS (PCBs)	0.00071	0.07067	0.455	654			7-	25.572	46.555	0.045.65	0.405.65	0.405.65	4 445 04		
TOTAL PCBs (AROCHLOR)	0.03371	0.07987	0.132	350	30	1	70	25,550	10,950	2.61E-05	6.19E-05	6.10E-05	1.44E-04		

TABLE 3-34
CONSUMPTION OF FLOUNDER FILLET CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	19 6 1 6 5 5 F	MAXI-	INTAKE	EXPOSURE	EXPOSURE	FRACTION INGESTED FROM CONTAM-	ВОДУ	AVERAGING TIME (days)		POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT			CARCINOGENS		NONCARCINOGEN		
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX	
INORGANICS							,	75		10000				
ALUMINUM	0.9030	0.9030	0.381	365	30	1	70	25,550	10,950	2.11E-03	2.11E-03	4.91E-03	4.91E-03	
ARSENIC	1.3300	1.3300	0.381	365	30	1	70	25,550	10,950	3.10E-03	3.10E-03	7.24E-03	7.24E-03	
CHROMIUM	0.1204	0.1204 *	0.381	365	30	1	70	25,550	10,950	2.81E-04	2.81E-04	8.55E-04	6.55E-04	
COPPER	0.1483	0.1483	0.381	385	30	1	70	25,550	10,950	3.46E-04	3.46E-04	8.07E-04	8.07E-04	
IRON	2.0200	2.0200	0.381	385	30	1	70	25,550	10,950	4.71E-03	4.71E-03	1.10E-02	1.10E-02	
LEAD	0.0110	0.0110	0.381	365	30	1	70	25,550	10,950	2.57E-05	2.57E-05	5.99E-05	5.99E-05	
MANGANESE	0.0839	0.0839 *	0.381	365	30	1	70	25,550	10,950	1.96E-04	1.96E-04	4.57E-04	4.57E-04	
MERCURY	0.0193	0.0193 *	0.381	365	30	1	70	25,550	10,950	4.50E-05	4.50E-05	1.05E-04	1.05E-04	
NICKEL	0.1161	0.1161 *	0.381	365	30	1	70	25,550	10,950	2.71E-04	2.71E-04	6.32E-04	6.32E-04	
SILVER	0.0086	0.0086	0.381	365	30	1	70	25,550	10,950	2.01E-05	2.01E-05	4.68E-05	4.68E-05	
ZINC	5.2460	5.2460 *	0.381	365	30	1	70	25,550	10,950	1.22E-02	1.22E-02	2.86E-02	2.86E-02	
PESTICIDES														
ALDRIN	0.00037	0.00058	0.381	365	30	1	70	25,550	10,950	8.60E-07	1.35E-06	2.01E-06	3.16E-06	
ALPHA-CHLORDANE	0.00016	0.00016 *	0.381	365	30	1	70	25,550	10,950	3.62E-07	3.77E-07	8.44E-07	8.80E-07	
HEPTACHLOR	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	3.46E-07	3.46E-07	8.08E-07	8.08E-07	
HEPTACHLOR EPOXIDE	0.00003	0.00003	0.381	365	30	1	70	25,550	10,950	7.11E-08	8.12E-08	1.66E-07	1.89E-07	
HEXACHLOROBENZENE	0.00013	0.00016	0.381	365	30	1	70	25,550	10,950	3.01E-07	3.70E-07	7.03E-07	8.64E-07	
LINDANE (GAMMA-BHC)	0.00006	0.00007	0.381	365	30	1	70	25,550	10,950	1.46E-07	1.71E-07	3.40E-07	3.99E-07	
MIREX	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	3.46E-07	3.46E-07	8.08E-07	8.08E-07	
TRANS-NONACHLOR	0.00023	0.00031	0.381	365	30	1	70	25,550	10,950	5.40E-07	7.34E-07	1.26E-06	1.71E-06	
o,p'-DDD	0.00015	0.00015	0.381	365	30	1	70	25,550	10,950	3.46E-07	3.46E-07	8.08E-07	8.08E-07	
o,p'-DDE	0.00014	0.00015	0.381	365	30	1	70	25,550	10,950	3.28E-07	3.46E-07	7.65E-07	8.08E-07	
o,p'-DDT	0.00052	0.00089	0.381	365	30	1	70	25,550	10,950	1.21E-06	2.07E-06	2.82E-06	4.84E-06	
p,p'-DDD	0.00010	0.00015	0.381	365	30	1	70	25,550	10,950	2.36E-07	3.46E-07	5.50E-07	8.08E-07	
p.p'-DDE	0.00067	0.00081	0.381	365	30	1	70	25,550	10,950	1.56E-06	1.89E-06	3.63E-06	4.41E-06	
p.p'-DDT	0.00277	0.00531	0.381	365	30	1	70	25,550	10,950	6.46E-06	1.24E-05	1.51E-05	2.89E-05	
POLYCHLORINATED BIPHENYLS (PCBs)				·		`		·						
TOTAL PCBs (AROCHLOR)	0.01437	0.01845	0.381	365	30	1	70	25,550	10,950	3.35E-05	4.30E-05	7.82E-05	1.00E-04	

NOTES:

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 3-35
CONSUMPTION OF FLOUNDER FILLET CAUGHT AROUND SEAVEY ISLAND FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFFSHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI	INTAKE	EXPOSURE EXPOSUI		FRACTION INGESTED FROM CPOSURE CONTAM-		AVERAGIN	AVERAGING TIME (days)		POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT	Figure 1 and the second of the		CARCINO	GENS	NONCARO	INOGENS		
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX		MAX		
INORGANICS									1.1.2.2.						
ALUMINUM	1.0850	1.2500	0.381	365	30	1	70	25,550	10,950	2.53E-03	2.92E-03	5.91E-03	6.80E-03		
ARSENIC	1.6850	1.7500	0.381	385	30	1	70	25,550	10,950	3.93E-03	4.08E-03				
CHROMIUM	0.2365	0.3250	0.381	365	30	1	70	25,550	10,950	5.52E-04	7.58E-04	1.29E-03	1.77E-03		
COPPER	0.2313	0.2425	0.381	365	30	1	70	25,550	10,950	5.40E-04	5.66E-04	1.26E-03	1.32E-03		
IRON	2.8350	3.7700	0.381	365	30	1	70	25,550	10,950	6.61E-03	8.79E-03	1.54E-02	2.05E-02		
LEAD	0.0555	0.0950	0.381	365	30	1	70	25,550	10,950	1.29E-04	2.22E-04	3.02E-04	5.17E-04		
MANGANESE	0.4205	0.7750	0.381	365	30	1	70	25,550	10,950	9.81E-04	1.81E-03	2.29E-03	4.22E-03		
MERCURY	0.0135	0.0220	0.381	365	30	1	70	25,550	10,950	3.15E-05	5.13E-05	7.35E-05	1.20E-04		
NICKEL	0.1385	0.1520	0.381	365	30	1	70	25,550	10,950	3.23E-04	3.55E-04	7.54E-04	8.27E-04		
ZINC	8.7125	10.5250	0.381	365	30	1	70	25,550	10,950	2.03E-02	2.46E-02	4.74E-02	5.73E-02		
PESTICIDES															
ALDRIN	0.00040	0.00060	0.381	365	30	1	70	25,550	10,950	9.33E-07	1.40E-06	2.18E-06	3.27E-06		
ALPHA-CHLORDANE	0.00040	0.00060	0.381	365	30	1	70	25,550	10,950	9.33E-07		2.18E-06	3.27E-06		
HEPTACHLOR	0.00040	0.00060	0.381	365	30	1	70	25,550	10.950	9.33E-07		2.18E-06	3.27E-06		
HEPTACHLOR EPOXIDE	0.00040	0.00060	0.381	365	30	1	70	25,550	10.950	9.33E-07	·	2.18E-06	3.27E-06		
HEXACHLOROBENZENE	0.00160	0.00240	0.381	365	30	1	70	25,550	10,950	3.73E-06	5.60E-06	8.71E-06	1.31E-05		
LINDANE (GAMMA-BHC)	0.00040	0.00060	0.381	365	30	1	70	25,550	10.950	9.33E-07	1.40E-06	2.18E-06	3.27E-06		
MIREX	0.00040	0.00060	0.381	365	30	1	70	25,550	10,950	9.33E-07	1.40E-06	2.18E-06	3.27E-06		
TRANS-NONACHLOR	0.00080	0.00110	0.381	365	30	1	70	25,550	10,950	1.87E-06	2.57E-06	4.35E-06	5.99E-06		
o,p'-DDD	0.00040	0.00060	0.381	365	30	1	70	25,550	10.950	9.33E-07	1.40E-06	2.18E-06	3.27E-06		
o,p'-DDE	0.00040	0.00060	0.381	365	30	1	70	25.550	10.950	9.33E-07	1.40E-06	2.18E-06			
o,p'-DDT	0.00040	0.00060	0.381	365	30	1	70	25,550	10,950	9.33E-07	1.40E-06	2.18E-06			
p,p'-DDD	0.00040	0.00060	0.381	365	30	1	70	25,550	10,950	9.33E-07	1.40E-06	2.18E-06	1		
p,p'-DDE	0.00350	0.00530	0.381	365	30	1	70	25,550	10,950	8.16E-06	1.24E-05	1.91E-05			
p,p'-DDT	0.00040	0.00060	0.381	365	30	1	70	25,550	10,950	9.33E-07	1.40E-06	2.18E-06			
POLYCHLORINATED BIPHENYLS (PCBs)	2.000.70	2.0000	0.001	303	- 00		, 0	20,000	10,800	J.00E 07		2.10L-00	0.27 L-00		
TOTAL PCBs (AROCHLOR)	0.04284	0.06245	0.381	365	30	1	70	25,550	10,950	9.99E-05	1.46E-04	2.33E-04	3.40E-04		

TABLE 3-36
CONSUMPTION OF FLOUNDER FILLET CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAXI- MUM	INTAKE PATE	EXPOSURE	EXPOSURE			AVERAGIN	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	CONC.	CONC.		FREQUENCY	DURATION					CARCINOGENS		NONCARCINOGENS	
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
INORGANICS		1			132		(1.0) A. A.						HIPOL
ALUMINUM	2.1579	2.6796	0.381	365	30	1	70	25,550	10.950	5.03E-03	6.25E-03	1 17F-02	1.46E-02
ARSENIC	1.3800	1.6400	0.381	365	30	1		25,550	10,950	3.22E-03	3.83E-03	7.51E-03	
CADMIUM	0.0059	0.0117	0.381	365	30	1	70	25,550	10.950	1.38E-05	2.73E-05	3.22E-05	
CHROMIUM	0.1725	0.2574	0.381	365	30	1	70	25,550	10,950	4.02E-04	6.00E-04	9.39E-04	1.40E-03
COPPER	0.2648	0.3510	0.381	365	30	1	70	25.550	10,950	6.18E-04	8.19E-04	1.44E-03	
IRON	5.4167	6.4300	0.381	365	30	1	70	25,550	10,950	1.26E-02	1.50E-02	<u> </u>	3.50E-02
LEAD	0.0370	0.0490	0.381	365	30	1	70	25,550	10.950	8.63E-05	4	2.01E-04	
MANGANESE	0.2758	0.5850	0.381	365	30	1	70	25,550	10.950	6.43E-04	1.36E-03	1.50E-03	
MERCURY	0.0316	0.0351	0.381	365	30	1	70	25.550	10.950	7.36E-05	8.19E-05	1.72E-04	1.91E-04
NICKEL	0.1578	0.1766	0.381	365	30	1	70	25,550	10.950	3.68E-04		8.59E-04	9.61E-04
SILVER	0.0065	0.0142	0.381	365	30	1	70	25,550	10.950	1.52E-05			1::::::::::::::::::::::::::::::::::::::
ZINC	7.4790	9.6170	0.381	365	30	1	70	25,550	10,950		2.24E-02		1
PESTICIDES													
ALDRIN	0.00012	0.00015	0.381	365	30	1	70	25,550	10,950	2.81E-07	3.50E-07	6.57E-07	8.16E-07
ALPHA-CHLORDANE	0.00036	0.00085	0.381	365	30	1	70	25,550		8.36E-07	1.99E-06	1.95E-06	
HEPTACHLOR	0.00012	0.00015	0.381	365	30	1	70	25,550	10.950	2.81E-07		6.57E-07	8.16E-07
HEPTACHLOR EPOXIDE	0.00012	0.00015	0.381	365	30	1	70	25,550	10,950	2.81E-07		6.57E-07	8.16E-07
HEXACHLOROBENZENE	0.00055	0.00117	0.381	365	30	1	70	25,550	10,950	1.29E-06	 	3.02E-06	6.38E-06
LINDANE (GAMMA-BHC)	0.00010	0.00014	0.381	365	30	1	70	25,550	10,950			5.56E-07	
MIREX	0.00012	0.00015	0.381	365	30	1	70	25,550	<u> </u>	2.73E-07	3.50E-07	6.38E-07	8.16E-07
TRANS-NONACHLOR	0.00072	0.00133	0.381	365	30	1	70	25,550	10,950		·	3.93E-06	7.26E-06
o,p'-DDD	0.00030	0.00046	0.381	365	30	1	70	25,550		6.93E-07	1.06E-06	1.62E-06	2.48E-06
o,p'-DDE	0.00015	0.00031	0.381	365	30	1	70	25,550		3.60E-07		8.41E-07	1.68E-06
o,p'-DDT	0.00037	0.00083	0.381	365	30	1	70	25,550		8.68E-07		2.03E-06	4.51E-06
p,p'-DDD	0.00137	0.00276	0.381	365	30	1	70	25,550			6.44E-06	7.47E-06	1.50E-05
p.p'-DDE	0.00419	0.00943	0.381	365	30	1	70	25,550			2.20E-05		5.13E-05
p.p'-DDT	0.00056	0.00080	0.381	365	30	1	70	25,550			1.87E-06		
POLYCHLORINATED BIPHENYLS (PCBs)								,					
TOTAL PCBs (AROCHLOR)	0.04052	0.07987	0.381	365	30	1	70	25,550	10.950	9.45E-05	1.86E-04	2.21E-04	4.35E-04

TABLE 3-37
CONSUMPTION OF FLOUNDER FILLET CAUGHT AT YORK HARBOR SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SITE, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER- MAXI-		INTAKE	EXPOSURE		FRACTION INGESTED FROM CONTAM-		AVERAGIN	POTENTIAL CHRONIC DAILY INTAKE (mg/kg/day)				
	CONC.	CONC.	RATE	FREQUENCY	DURATION	INATED	WEIGHT	l		CARCINO	GENS	NONCARO	INOGENS
ANALYTE	(mg/kg)	(mg/kg)	(kg/day)	(days/yr)	(years)	SOURCE	(kg)	CARCINOGENS	NONCARCINOGENS	AVG	MAX	AVG	MAX
PESTICIDES													
ALPHA-CHLORDANE	0.00039	0.00039	0.381	365	30	1	70	25,550	10,950	9.10E-07	9.10E-07	2.12E-06	2.12E-06
TRANS-NONACHLOR	0.00019	0.00019	0.381	365	30	1	70	25,550	10,950	4.43E-07	4.43E-07	1.03E-06	1.03E-06
p,p'-DDD	0.00035	0.00035	0.381	365	30	1	70	25,550	10,950	8.16E-07	8.16E-07	1.91E-06	1.91E-06
p,p'-DDE	0.00079	0.00079	0.381	365	30	1	70	25,550	10,950	1.84E-06	1.84E-06	4.30E-06	4.30E-06
POLYCHLORINATED BIPHENYLS (PCBs)													
TOTAL PCBs (AROCHLOR)	0.01352	0.01414	0.381	365	30	1	70	25,550	10,950	3.15E-05	3.30E-05	7.36E-05	7.70E-05

NOTES:

*: AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

Ingestion of Chemicals in Sediment For Current Conditions Recreational Exposures, While Swimming, Fishing and Wading in River, Off-Shore Impacts Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Intake (mg/kg - day)	=	CS x IR x CF x FI x EF x ED
		BW x AT

CS	=	Chemical concentration in sediment (mg/kg)
IR	=	Ingestion Rate Sediment (mg/day)
CF	=	Conversion Factor (10-6 mg/kg)
FI	=	Fraction Ingested from contaminated source (unitless)
EF	=	Exposure Frequency (days/year)
ED	=	Exposure Duration (years)
BW	=	Body Weight (kg)
AT	=	Averaging Time (period over which exposure is averaged - days)

CS	=	Site-specific measure value
IR	=	100 mg/day (USEPA, December, 1989a - uses soil ingestion rates for adults)
CF	=	10-6 mg/kg
FI	=	1.0 (Assumed)
EF	=	7 days/year (National average for swimming; USDOI in EPA 1988b, EPA 1989a)
ED	=	30 years (USEPA 1991)
BW	=	70 kg adult (USEPA 1991)
ΑT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a)
		365 days/year x 70 years for carcinogenic effects (USEPA, December, 1989a)

TABLE 3-38
INGESTION OF CHEMICALS IN SEDIMENT COLLECTED FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	INGES-	INGESTED FROM	CONVER-	EXPO- SURE	EXPO-		AVERAGIN	IG TIME	LUMBUR ARREST	TIAL CHRON		erio di Bistorio
[- 보고 [- 보고 프로그램 기계를 받고 [- 1 - 1 - 1] #	AGE	IMUM	TION	CONTAM-	FACTOR	FRE-	DUR-	BODY	(days)	(days)		GENS	NONCARC	INOGENS
[20] - 프린플램스 및 보고 프로그램	CONC.	CONC.	RATE	INATED	(1.0E-06	QUENCY	ATION	WEIGHT	CARCIN-	NONCAR-				
ANALYTE	(mg/kg)	(mg/kg)	(mg/day)	SOURCE	kg/mg)	(days/yr)	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX
INORGANICS			ļ											
ALUMINUM	33,647.6190	77,900.0000	100	1.00	1.00E-06	7	30	70	25,550	10,950	3.95E-04	9.15E-04	9.22E-04	2.13E-03
ARSENIC	12.2976	28.7000	100	1.00	1.00E-06	7	30	70	25,550	10,950	1.44E-07	3.37E-07	3.37E-07	7.86E-07
CADMIUM	0.5794	2.0000	100	1.00	1.00E-06	7	30	70	25,550	10,950	6.80E-09	2.35E-08	1.59E-08	5.48E-08
CHROMIUM	109.0119	211.0000	100	1.00	1.00E-06	7	30	70	25,550	10,950	1.28E-06	2.48E-06	2.99E-06	5.78E-06
COPPER	43.2651	105.0000	100	1.00	1.00E-06	7	30	70	25,550	10,950	5.08E-07	1.23E-06	1.19E-06	2.88E-06
IRON	24,632.3810	50,300.0000	100	1.00	1.00E-06	7	30	70	25,550	10,950	2.89E-04	5.91E-04	6.75E-04	1.38E-03
LEAD	63.3348	124.0000	100	1.00	1.00E-06	7	30	70	25,550	10,950	7.44E-07	1.46E-06	1.74E-06	3.40E-08
MANGANESE	305.1905	542.0000	100	1.00	1.00E-06	7	30	70	25,550	10,950	3.58E-06	6.36E-06	8.36E-06	1.48E-05
MERCURY	0.2250	0.6700	100	1.00	1.00E-08	7	30	70	25,550	10,950	2.64E-09	7.87E-09	6.16E-09	1.84E-08
NICKEL	27.9049	91.2000	100	1.00	1.00E-06	7	30	70	25,550	10,950	3.28E-07	1.07E-06	7.65E-07	2.50E-06
SILVER	0.5926	1.3000	100	1.00	1.00E-06	7	30	70	25,550	10,950	6.96E-09	1.53E-08	1.62E-08	3.56E-08
ZINC	126.4357	530.0000	100	1.00	1.00E-06	7	30	70	25,550	10,950	1.48E-06	6.22E-06	3.46E-06	1.45E-05
PESTICIDES														
ALDRIN	0.00168	0.02240	100	1.00	1.00E-06	7	30	70	25,550	10,950	1.97E-11	2.63E-10	4.59E-11	6.14E-10
ALPHA-CHLORDANE	0.00069	0.00292	100	1.00	1.00E-06	7	30	70	25,550	10,950	8.05E-12	3.43E-11	1.88E-11	8.00E-11
HEXACHLOROBENZENE	0.00060	0.00720	100	1.00	1.00E-06	7	30	70	25,550	10,950	7.07E-12	8.45E-11	1.65E-11	1.97E-10
LINDANE (GAMMA-BHC)	0.00041	0.00106	100	1.00	1.00E-06	7	30	70	25,550	10,950	4.77E-12	1.25E-11	1.11E-11	2.92E-11
MIREX	0.00045	0.00170	100	1.00	1.00E-08	7	30	70	25,550	10,950	5.24E-12	2.00E-11	1.22E-11	4.66E-11
TRANS-NONACHLOR	0.00039	0.00148	100	1.00	1.00E-06	7	30	70	25,550	10,950	4.57E-12	1.73E-11	1.07E-11	4.04E-11
o,p'DDD	0.00116	0.00372	100	1.00	1.00E-06	7	30	70	25,550	10,950	1.36E-11	4.36E-11	3.17E-11	1.02E-10
o,p'-DDE	0.00075	0.00223	100	1.00	1.00E-06	7	30	70	25,550	10,950	8.78E-12	2.62E-11	2.05E-11	6.11E-11
o,p'-DDT	0.00104	0.00950	100	1.00	1.00E-06	7	30	70	25,550	10,950	1.22E-11	1.12E-10	2.84E-11	2.60E-10
p,p'-ODO	0.00439	0.01908	100	1.00	1.00E-06	7	30	70	25,550	10,950	5.16E-11	2.24E-10	1.20E-10	5.23E-10
p,p'-DDE	0.00232	0.00640	100	1.00	1.00E-06	7	30	70	25,550	10,950	2.72E-11	7.51E-11	6.34E-11	1.75E-10
p.p'-DDT	0.01265	0.11956	100	1.00	1.00E-06	7	30	70	25,550	10,950	1.48E-10	1.40E-09	3.46E-10	3.28E-09

TABLE 3-38
INGESTION OF CHEMICALS IN SEDIMENT COLLECTED FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	INGES-	INGESTED FROM	CONVER-	EXPO- SURE	EXPO- SURE		AVERAGIN	IG TIME		TAL CHRON KE EXPsi (m		Jan de tauje
	AGE	IMUM	TION	CONTAM-	FACTOR	FRE-	DUR-	BODY	(days)		CARCINO	3ENS	NONCARC	INOGENS
	CONC.	CONC.	RATE	INATED	(1.0E-06	QUENCY	ATION	WEIGHT	CARCIN-	NONCAR-				
ANALYTE	(mg/kg)	(mg/kg)	(mg/day)	SOURCE	kg/mg)	(days/yr)	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS														
ANTHRACENE	0.24125	1.90000	100	1.00	1.00E-06	7	30	70	25,550	10,950	2.83E-09	2.23E-08	6.61E-09	5.21E-08
BENZO(A)ANTHRACENE	0.48149	3.60000	100	1.00	1.00E-06	7	30	70	25,550	10,950	5.65E-09	4.23E-08	1.32E-08	9.86E-08
BENZO(A)PYRENE	0.48184	2.30000	100	1.00	1.00E-06	7	30	70	25,550	10,950	5.66E-09	2.70E-08	1.32E-08	6.30E-08
BENZO(E)PYRENE	0.35043	1.50000	100	1.00	1.00E-06	7	30	70	25,550	10,950	4.11E-09	1.76E-08	9.60E-09	4.11E-08
BENZO(G.H,I)PERYLENE	0.19474	0.66000	100	1.00	1.00E-06	7	30	70	25,550	10,950	2.29E-09	7.75E-09	5.34E-09	1.81E-08
CHRYSENE	0.48643	3.20000	100	1.00	1.00E-06	7	30	70	25,550	10,950	5.71E-09	3.76E-08	1.33E-08	8.77E-08
DIBENZO(A,H)ANTHRACENE	0.05709	0.24000	100	1.00	1.00E-06	7	30	70	25,550	10,950	6.70E-10	2.82E-09	1.56E-09	6.58E-09
FLUORANTHENE	1.14012	14.00000	100	1.00	1.00E-06	7	30	70	25,550	10,950	1.34E-08	1.64E-07	3.12E-08	3.84E-07
FLUORENE	0.07658	1.10000	100	1.00	1.00E-06	7	30	70	25,550	10,950	8.99E-10	1.29E-08	2.10E-09	3.01E-08
INDENO(1,2,3-CD)PYRENE	0.21539	0.95000	100	1.00	1.00E-06	7	30	70	25,550	10,950	2.53E-09	1.12E-08	5.90E-09	2.60E-08
PERYLENE	0.15622	0.86000	100	1.00	1.00E-06	7	30	70	25,550	10,950	1.83E-09	1.01E-08	4.28E-09	2.36E-08
PHENANTHRENE	0.62655	6.20000	100	1.00	1.00E-06	7	30	70	25,550	10,950	7.36E-09	7.28E-08	1.72E-08	1.70E-07
PYRENE	0.97780	10.00000	100	1.00	1.00E-06	7	30	70	25,550	10,950	1.15E-08	1.17E-07	2.68E-08	2.74E-07
POLYCHLORINATED BIPHENYLS (PCBs)														
TOTAL PCBs (AROCHLOR)	0.06702	0.34770	100	1.00	1.00E-06	7	30	70	25,550	10,950	7.87E-10	4.08E-09	1.84E-09	9.53E-09

TABLE 3-39
INGESTION OF CHEMICALS IN SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	INGES-	INGESTED FROM	CONVER- SION	EXPO- SURE	EXPO- SURE		AVERAGIN	G TIME	1 .	TIAL CHRON KE EXPsi (m		
· · · · · · · · · · · · · · · · · · ·	AGE	IMUM	TION	CONTAM-	FACTOR	FRE-	DUR-	BODY	(days)	je i krijes, i r	CARCINO	GENS	NONCARC	NOGENS
in de Charles de Carles de Car La companya de Carles	CONC.	CONC.	RATE	INATED	(1.0E-06	QUENCY	ATION	WEIGHT	CARCIN-	NONCAR-				
ANALYTE	(mg/kg)	(mg/kg)	(mg/day)	SOURCE	kg/mg)	(days/yr)	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX
INORGANICS														
ALUMINUM	28,050.0000	31,700.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.74E-04	3.10E-04	7.68E-04	8.68E-04
ARSENIC	6.0500	13.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.92E-08	1.27E-07	1.66E-07	3.56E-07
CADMIUM	0.2000	0.2700	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.96E-09	2.64E-09	5.48E-09	7.40E-09
CHROMIUM	58.2500	99.8000	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.70E-07	9.77E-07	1.60E-06	2.73E-06
COPPER	8.0300	22.4000	100	1.00	1.00E-06	7	25	70	25,550	9,125	7.86E~08	2.19E-07	2.20E-07	6.14E-07
IRON	14,152.5000	22,800.0000	100	1.00	1.00E-08	7	25	70	25,550	9,125	1.38E-04	2.23E-04	3.88E-04	6.25E-04
LEAD	27.2900	61.9000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.67E-07	6.06E-07	7.48E-07	1.70E-06
MANGANESE	209.5000	306.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.05E-06	2.99E-06	5.74E-06	8.38E-06
NICKEL	13.7250	21.7000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.34E-07	2.12E-07	3.76E-07	5.95E-07
SILVER	0.4083	0.8900	100	1.00	1.00E-06	7	25	70	25,550	9,125	4.00E-09	8.71E-09	1.12E-08	2.44E-08
ZINC	49.5000	82.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	4.84E-07	8.02E-07	1.36E-06	2.25E-06
PESTICIDES														
ALDRIN	0.00035	0.00068	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.44E-12	6.69E-12	9.64E-12	1.87E-11
ALPHA-CHLORDANE	0.00062	0.00098	100	1.00	1.00E-06	7	25	70	25,550	9,125	6.04E-12	9.60E-12	1.69E-11	2.69E-11
o,p'-DDD	0.00055	0.00082	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.35E-12	8.00E-12	1.50E-11	2.24E-11
o,p'-DDE	0.00022	0.00031	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.18E-12	3.00E-12	6.11E-12	8.41E-12
p.p'-DDD	0.00126	0.00349	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.23E-11	3.41E-11	3.44E-11	9.55E-11
p.p'~DDE	0.00074	0.00219	100	1.00	1.00E-06	7	25	70	25,550	9,125	7.20E-12	2.15E-11	2.02E-11	6.01E-11
p,p'-DDT	0.00706	0.01179	100	1.00	1.00E-06	7	25	70	25,550	9,125	6.90E-11	1.15E-10	1.93E-10	3.23E-10
POLYAROMATIC HYDROCARBONS														
ANTHRACENE	0.19420	0.40000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.90E-09	3.91E-09	5.32E-09	1.10E-08
BENZO(A)ANTHRACENE	0.35460	0.68000	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.47E-09	6.65E-09	9.72E-09	1.86E-08
BENZO(A)PYRENE	0.37600	0.70000	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.68E-09	6.85E-09	1.03E-08	1.92E-08
BENZO(E)PYRENE	0.24220	0.48000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.37E-09	4.70E-09	6.64E-09	1.32E-08
BENZO(G,H,I)PERYLENE	0.14460	0.29000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.41E-09	2.84E-09	3.96E-09	7.95E-09
CHRYSENE	0.33700	0.63000	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.30E-09	6.16E-09	9.23E-09	1.73E-08
DIBENZO(A,H)ANTHRACENE	0.05670	0.12000	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.55E-10	1.17E-09	1.55E-09	3.29E-09
FLUORANTHENE	0.66120	1.20000	100	1.00	1.00E-06	7	25	70	25,550	9,125	6.47E-09	1.17E-08	1.81E-08	3.29E-08
FLUORENE	0.03820	0.08200	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.74E-10	8.02E-10	1.05E-09	2.25E-09
INDENO(1,2,3-CD)PYRENE	0.18460	0.38000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.81E-09	3.72E-09	5.06E-09	1.04E-08
PERYLENE	0.10280	0.20000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.01E-09	1.96E-09	2.82E-09	5.48E-09
PHENANTHRENE	0.34620	0.64000	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.39E-09	6.26E-09	9.48E-09	1.75E-08
PYRENE	0.60440	1.10000	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.91E-09	1.08E-08	1.66E-08	3.01E-08
POLYCHLORINATED BIPHENYLS (PCBs)														
TOTAL PCBs (AROCHLOR)	0.05452	0,13360	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.33E-10	1.31E-09	1.49E-09	3.66E-09

TABLE 3-40
INGESTION OF CHEMICALS IN SEDIMENT FROM AROUND SEAVEY ISLAND FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	INGES-	INGESTED FROM	CONVER-	EXPO- SURE	EXPO- SURE		AVERAGIN	G TIME		TIAL CHRON KE EXPsi (m	307 71 317 4	
	AGE	IMUM	TION	CONTAM-	FACTOR	FRE-	DUR-	BODY	(days)		CARCINO	GENS	NONCARC	INOGENS
ANALYTE	CONG. (mg/kg)	Links have in a constant	RATE (mg/day)	INATED SOURCE	(1.0E-06 kg/mg)		ATION (yrs)	WEIGHT (kg)	Li Nacio los Interes	NONCAR- CINOGENS	AVG	MAX	AVG	MAX
INORGANICS	(mg/xg)	(mg/kg)	(ing/day)	COOIDE	waa)	(dayaryı)	()1-5	(wB)	Julia	anto della		WI DC	n d) ION DX
ALUMINUM	32,635.0000	48,800,0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.19E-04	4.77E-04	8.94E-04	1.34E-03
ARSENIC	10.9700	17.8000	100	1.00	1.00E-06	7	+	70	25,550	9.125	1.07E-07	1.74E-07	3.01E-07	4.88E-07
CADMIUM	0.5333	2,0000	100	1.00	1.00E-06	7	 	70	25,550	9,125	5.22E-09	1.96E-08	1.46E-08	5.48E-08
CHROMIUM	88.1800	151.0000	100	1.00	1.00E-06	7	+	70	25,550	9,125	8.63E-07	1.48E-06	2.42E-06	4.14E-06
COPPER	47.1150	105,0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	4.61E-07	1.03E-06	1.29E-06	2.88E-06
IBON	23.610.0000	50.300.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.31E-04	4.92E-04	6.47E-04	1.38E-03
LEAD	70.7900	124.0000	100	1,00	1.00E-06	7	25	70	25,550	9,125	6.93E-07	1.21E-08	1.94E-06	3.40E-06
MANGANESE	308.7500	421,0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.02E-06	4.12E-06	8.46E-06	1.15E-05
MERCURY	0.2142	0,6700	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.10E-09	6.56E-09	5.87E-09	1.84E-08
NICKEL	28.0526	91.2000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.74E-07	8.92E-07	7.69E-07	2.50E-06
SILVER	0.4610	0.7400	100	1.00	1.00E-06	7	25	70	25,550	9,125	4.51E-09	7.24E-09	1.26E-08	2.03E-08
ZINC	139.2550	530.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.36E-06	5.19E-06	3.82E-06	1.45E-05
PESTICIDES		ı												
ALDRIN	0.00280	0.02240	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.73E-11	2.19E-10	7.66E-11	6.14E-10
ALPHA-CHLORDANE	0.00068	0.00292	100	1.00	1.00E-06	7	25	70	25,550	9,125	6.65E-12	2.86E-11	1.86E-11	8.00E-11
HEXACHLOROBENZENE	0.00033	0.00086	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.25E-12	8.43E-12	9.10E-12	2.36E-11
LINDANE (GAMMA-BHC)	0.00046	0.00106	100	1.00	1.00E-06	7	25	70	25,550	9,125	4.49E-12	1.04E-11	1.26E-11	2.92E-11
MIREX	0.00039	0.00120	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.79E-12	1.17E-11	1.06E-11	3.29E-11
TRANS-NONACHLOR	0.00034	0.00148	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.34E-12	1.44E-11	9.34E-12	4.04E-11
o,p'-DDD	0.00080	0.00372	100	1,00	1.00E-06	7	25	70	25,550	9,125	7.81E-12	3.64E-11	2.19E-11	1.02E-10
o,p'DDE	0.00058	0.00223	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.70E-12	2.18E-11	1.60E-11	6.11E-11
o,p'-DDT	0.00114	0.00950	100	1.00	1.00E-06	7		70	25,550	9,125	1.12E-11	9.30E-11	3.12E-11	2.60E-10
p,p'-DDD	0.00303	0.01908	100	1.00	1.00E-06	7	·	70	25,550	9,125	2.96E-11	1.87E-10	8.29E-11	5.23E-10
p,p'-DDE	0.00186	0.00539	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.82E-11	5.27E-11	5.08E-11	1.48E-10
p,p'-DDT	0.01876	0.11956	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.84E-10	1.17E-09	5.14E-10	3.28E-09

TABLE 3-40
INGESTION OF CHEMICALS IN SEDIMENT FROM AROUND SEAVEY ISLAND FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	INGES-	INGESTED FROM	CONVER- SION	EXPO- SURE	EXPO- SURE		AVERAGIN	G TIME	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TAL CHRON KE EXPsi (m		
	AGE	IMUM	TION	CONTAM-	FACTOR	FRE-	DUR-	BODY	(days)	k salah d	CARCINO	3ENS	NONCARC	NOGENS
	CONC.	CONC.	RATE	INATED	(1.0E-06	QUENCY	ATION	WEIGHT	CARCIN-	NONCAR-				
ANALYTE	(mg/kg)	(mg/kg)	(mg/day)	SOURCE	kg/mg)	(days/yr)	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS														
ANTHRACENE	0.32050	1.90000	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.14E-09	1.86E-08	8.78E-09	5.21E-08
BENZO(A)ANTHRACENE	0.61083	3.60000	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.98E-09	3.52E-08	1.67E-08	9.86E-08
BENZO(A)PYRENE	0.56125	2.20000	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.49E-09	2.15E-08	1.54E-08	6.03E-08
BENZO(E)PYRENE	0.40750	1.50000	100	1.00	1.00E-06	7	25	70	25,550 9,125		3.99E-09	1.47E-08	1.12E-08	4.11E-08
BENZO(G,H,I)PERYLENE	0.20996	0.55000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.05E-09	5.38E-09	5.75E-09	1.51E-08
CHRYSENE	0.60875	3.20000	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.96E-09	3.13E-08	1.67E-08	8.77E-08
DIBENZO(A,H)ANTHRACENE	0.06275	0.24000	100	1.00	1.00E-06	7	25	70	25,550	9,125	6.14E-10	2.35E-09	1.72E-09	6.58E-09
FLUORANTHENE	1.58750	14.00000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.55E-08	1.37E-07	4.35E-08	3.84E-07
FLUORENE	0.09452	0.67500	100	1.00	1.00E-06	7	25	70	25,550	9,125	9.25E-10	6.60E-09	2.59E-09	1.85E-08
INDENO(1,2,3-CD)PYRENE	0.22692	0.69000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.22E-09	6.75E-09	6.22E-09	1.89E-08
PERYLENE	0.18458	0.86000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.81E-09	8.41E-09	5.06E-09	2.36E-08
PHENANTHRENE	0.84479	6.20000	100	1.00	1.00E-06	7	25	70	25,550	9,125	8.27E-09	6.07E-08	2.31E-08	1.70E-07
PYRENE	1.30979	10.00000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.28E-08	9.78E-08	3.59E-08	2.74E-07
POLYCHLORINATED BIPHENYLS (PCBs)			1											
TOTAL PCBs (AROCHLOR)	0.05965	0.34770	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.84E-10	3.40E-09	1.63E-09	9.53E-09

TABLE 3-41
INGESTION OF CHEMICALS IN SEDIMENT FROM CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

The second second	AVER-	MAX-	INGES-	INGESTED FROM	CONVER-	EXPO- SURE	EXPO-		AVERAGIN	IG TIME		TIAL CHRON		-
Terror move strategreen alatem hij out oe	AGE	IMUM	TION	CONTAM-	FACTOR	FRE-	DUR-	BODY	(days)	a laka da	CARCINO		NONCARC	INOGENS
	CONC.	CONC.	RATE	INATED	(1.0E-06	QUENCY	ATION	WEIGHT	CARCIN-	NONCAR-				
ANALYTE	(mg/kg)	(mg/kg)	(mg/day)	SOURCE	kg/mg)	(days/yr)	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX
INORGANICS							,							
ALUMINUM	37,476.4706	77,900.0000	100	1.00	1.00E-06	7		70	25,550	9,125	3.67E-04	7.62E-04	1.03E-03	2.13E-03
ARSENIC	15.8706	28.7000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.55E-07	2.81E-07	4.35E-07	7.86E-07
CADMIUM	0.7535	1.1000	100	1.00	1.00E-06	7	25	70	25,550	9,125	7.37E-09	1.08E-08	2.06E-08	3.01E-08
CHROMIUM	150.0471	211.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.47E-06	2.06E-06	4.11E-06	5.78E-06
COPPER	49.4656	92.4000	100	1.00	1.00E-06	7	25	70	25,550	9,125	4.84E-07	9.04E-07	1.36E-06	2.53E-08
IRON	29,311.7647	40,000.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.87E-04	3.91E-04	8.03E-04	1.10E-03
LEAD	65.7176	104.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	6.43E-07	1.02E-06	1.80E-06	2.85E-06
MANGANESE	330.2353	542.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.23E-06	5.30E-06	9.05E-06	1.48E-05
MERCURY	0.2550	0.6700	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.50E-09	6.56E-09	6.99E-09	1.84E-08
NICKEL	32.2235	44.5000	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.15E-07	4.35E-07	8.83E-07	1.22E-06
SILVER	0.7982	1.3000	100	1.00	1.00E-06	7	25	70	25,550	9,125	7.81E-09	1.27E-08	2.19E-08	3.56E-08
ZINC	135.5765	206.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.33E-06	2.02E-06	3.71E-06	5.64E-06
PESTICIDES														
ALDRIN	0.00063	0.00180	100	1.00	1.00E-06	7	25	70	25,550	9,125	6.14E-12	1.76E-11	1.72E-11	4.93E-11
ALPHA-CHLORDANE	0.00072	0.00237	100	1.00	1.00E-06	7	25	70	25,550	9,125	7.02E-12	2.32E-11	1.96E-11	6.48E-11
HEPTACHLOR EPOXIDE	0.00035	0.00090	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.39E-12	8.81E-12	9.48E-12	2.47E-11
HEXACHLOROBENZENE	0.00112	0.00720	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.10E-11	7.05E-11	3.08E-11	1.97E-10
LINDANE (GAMMA-BHC)	0.00038	0.00079	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.75E-12	7.71E-12	1.05E-11	2.16E-11
MIREX	0.00057	0.00170	100	1.00	1.00E-08	7	25	70	25,550	9,125	5.61E-12	1.66E-11	1.57E-11	4.66E-11
TRANS-NONACHLOR	0.00052	0.00123	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.12E-12	1.21E-11	1.43E-11	3.38E-11
o,p'-DDD	0.00184	0.00290	100	1.00	1.00E-08	7	25	70	25,550	9,125	1.80E-11	2.84E-11	5.04E-11	7.95E-11
o,p'-DDE	0.00114	0.00220	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.12E-11	2.15E-11	3.13E-11	6.03E-11
o,p'-DDT	0.00117	0.00420	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.14E-11	4.11E-11	3.19E-11	1.15E-10
p,p'-DDD	0.00726	0.01600	100	1.00	1.00E-08	7	25	70	25,550	9,125	7.10E-11	1.57E-10	1.99E-10	4.38E~10
p,p'-DDE	0.00345	0.00640	100	1.00	1.00E-08	7	25	70	25,550	9,125	3.38E-11	6.26E-11	9.46E-11	1.75E-10
p,p'-DDT	0.00517	0.01411	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.05E-11	1.38E-10	1.42E-10	3.87E-10

TABLE 3-41
INGESTION OF CHEMICALS IN SEDIMENT FROM CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	INGES-	INGESTED FROM	CONVER- SION	EXPO- SURE	EXPO- SURE		AVERAGIN	G TIME	1 44, 1199, 137	TAL CHRON KE EXPsi (m	and the later of the	
	AGE	IMUM	TION	CONTAM-	FACTOR	FRE~	DUR-	BODY	(days)		CARCINO	BENS .	NONCARC	INOGENS
en en la compania de br>Notas de la compania	CONC.	CONC.	RATE	INATED	(1.0E-06	QUENCY	ATION	WEIGHT	CARCIN-	NONCAR-			بلو تنفر	
ANALYTE	(mg/kg)	(mg/kg)	(mg/day)	SOURCE	kg/mg)	(days/yr)	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS														
ANTHRACENE	0.09633	0.19000	100	1.00	1.00E-06	7	25	70	25,550	9,125	9.43E-10	1.86E-09	2.64E-09	5.21E-09
BENZO(A)ANTHRACENE	0.28100	0.45000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.75E-09	4.40E-09	7.70E-09	1.23E-08
BENZO(A)PYRENE	0.33133	0.57000	100	1.00	1.00E~06	7	25	70	25,550	9,125	3.24E-09	5.58E-09	9.08E-09	1.56E-08
BENZO(E)PYRENE	0.25667	0.42000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.51E-09	4.11E-09	7.03E~09	1.15E-08
BENZO(G,H,I)PERYLENE	0.17167	0.38000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.68E-09	3.72E-09	4.70E-09	1.04E-08
CHRYSENE	0.30200	0.52000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.95E-09	5.09E-09	8.27E-09	1.42E-08
DIBENZO(A,H)ANTHRACENE	0.04253	0.08400	100	1.00	1.00E-06	7	25	70	25,550	9,125	4.16E-10	8.22E-10	1.17E-09	2.30E-09
FLUORANTHENE	0.58067	1.00000	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.68E-09	9.78E-09	1.59E-08	2.74E-08
FLUORENE	0.03157	0.06900	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.09E-10	6.75E-10	8.65E-10	1.89E-09
INDENO(1,2,3-CD)PYRENE	0.17633	0.34000	100	1.00	1.00E-08	7	25	70	25,550	9,125	1.73E-09	3.33E-09	4.83E-09	9.32E-09
PERYLENE	0.11553	0.17000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.13E-09	1.66E-09	3.17E-09	4.66E-09
PHENANTHRENE	0.29700	0.53000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.91E-09	5.19E-09	8.14E-09	1.45E-08
PYRENE	0.56033	0.94000	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.48E-09	9.20E-09	1.54E-08	2.58E-08
POLYCHLORINATED BIPHENYLS (PCBs)														
TOTAL PCBs (AROCHLOR)	0.08164	0.19040	100	1.00	1.00E-06	7	25	70	25,550	9,125	7.99E-10	1.86E-09	2.24E-09	5.22E-09

TABLE 3-42
INGESTION OF CHEMICALS IN SEDIMENT FROM YORK HARBOR SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	INGES-	INGESTED FROM	CONVER-	EXPO- SURE	EXPO- SURE		AVERAGIN	G TIME		FIAL CHRON KE EXPsi (m	With Market to the second	
	AGE	IMUM	TION	CONTAM-	FACTOR	FRE-	DUR-	BODY	(days)		CARCINO	GENS	NONCARC	INOGENS
ANALYTE	CONC. (mg/kg)	CONC. (mg/kg)	RATE (mg/day)	SOURCE	(1.0E-06 kg/mg)	portugation distant	ATION (yrs)	F-99 1 5 1 1 1 1 1	CARCIN-	NONCAR- CINOGENS	AVG	MAX	AVG	MAX
INORGANICS							, , ,							
ALUMINUM	18,700.0000	20,700.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.83E-04	2.03E-04	5.12E-04	5.67E-04
ARSENIC	0.7350	1.2000	100	1.00	1.00E-06	7	25	70	25,550	9,125	7.19E-09	1.17E-08	2.01E-08	3.29E-08
CHROMIUM	27.8500	34.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	2.73E-07	3.33E-07	7.63E-07	9.32E-07
COPPER	1.2950	1.6000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.27E-08	1.57E-08	3.55E-08	4.38E-08
IRON	7,350.0000	9,250.0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	7.19E-05	9.05E-05	2.01E-04	2.53E-04
LEAD	19.9000	25.2000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.95E-07	2.47E-07	5.45E-07	6.90E-07
MANGANESE	104.3000	135,0000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.02E-06	1.32E-06	2.86E-06	3.70E-06
NICKEL	9.3000	11.1000	100	1.00	1.00E-06	7	25	70	25,550	9,125	9.10E-08	1.09E-07	2.55E-07	3.04E-07
ZINC	19.5000	21.7000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.91E-07	2.12E-07	5.34E-07	5.95E-07
PESTICIDES														
ALDRIN	0.00068	0.00072	100	1.00	1.00E-06	7	25	70	25,550	9,125	6.66E-12	7.05E-12	1.87E-11	1.98E-11
p,p'-DDT	0.00598	0.00691	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.85E-11	6.76E-11	1.64E-10	1.89E-10
POLYAROMATIC HYDROCARBONS													\	
ANTHRACENE	0.01500	0.01700	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.47E-10	1.66E-10	4.11E-10	4.66E-10
BENZO(A)ANTHRACENE	0.04450	0.06500	100	1.00	1.00E-06	7	25	70	25,550	9,125	4.35E-10	6 36E-10	1.22E-09	1.78E-09
BENZO(A)PYRENE	0.05550	0.08400	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.43E-10	8.22E-10	1.52E-09	2.30E-09
BENZO(E)PYRENE	0.03900	0.06000	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.82E-10	5.87E-10	1.07E-09	1.64E-09
BENZO(G,H,I)PERYLENE	0.02450	0.04500	100	1.00	1.00E~06	7	25	70	25,550	9,125	2.40E-10	4.40E-10	6.71E-10	1.23E-09
CHRYSENE	0.05050	0.07600	100	1.00	1.00E-06	7	25	70	25,550	9,125	4.94E-10	7.44E-10	1.38E-09	2.08E09
FLUORANTHENE	0.11200	0.15000	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.10E-09	1.47E-09	3.07E-09	4.11E-09
FLUORENE	0.00550	0.00600	100	1.00	1.00E-06	7	25	70	25,550	9,125	5.38E-11	5.87E-11	1.51E-10	1.64E-10
INDENO(1,2,3-CD)PYRENE	0.03150	0.05700	100	1.00	1.00E-06	7	25	70	25,550	9,125	3.08E-10	5.58E-10	8.63E-10	1.56E-09
PERYLENE	0.01400	0.02400	100	1.00	1.00E-06	7	25	70	25,550	9,125	1.37E-10	2.35E-10	3.84E-10	6.58E-10
PHENANTHRENE	0.06450	0.07400	100	1.00	1.00E-06	7	25	70	25,550	9,125	6.31E-10	7.24E-10	1.77E-09	2.03E-09
PYRENE	0.09450	0.13000	100	1.00	1.00E-06	7	25	70	25,550	9,125	9.25E-10	1.27E-09	2.59E-09	3.56E-09
POLYCHLORINATED BIPHENYLS (PCBs)														
TOTAL PCBs (AROCHLOR)	0.00810	0.01030	100	1.00	1.00E-06	7	25	70	25,550	9,125	7.93E-11	1.01E-10	2.22E-10	2.82E-10

Dermal Contact with Chemicals in Sediments For Current Conditions Recreational Exposures While Swimming, Fishing and Wading in River, Off-Shore Impacts Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Absorbed Dose (mg/kg - day) = $\frac{CS \times CF \times SA \times AF \times ABS \times EF \times ED}{BW \times AT}$

ED = Exposure Duration (years) BW = Body Weight (kg)	CS CF SA AF ABS	= = = =	Chemical Concentration in Sediment (mg/kg) Conversion Factor (10 ⁻⁶ kg/mg) Skin Surface Area Available for Contact (cm ² /event) Skin to Sediment Adherence Factor (mg/cm ²) Absorption Factor (unitless) Exposure Frequency (counts (users)
	BW	=	•

CS	=	Site-specific measured value
CF	=	10-6 kg/mg
SA	=	1,960 cm ² /event = for adults (feet, hands) assumed estimates based on values given in USEPA, 1989c
AF	=	0.5 mg/cm ² (USEPA, 1989c)
ABS	=	Chemical Specific: Cadmium 1% (USEPA, 1992) PCBs 6% (USEPA, 1992)
EF	=	7 days/year (based on national average for swimming; USDOI in EPA 1988 by EPA 1989a)
ED	=	30 years (USEPA 1991)
BW	=	70 kg adult (USEPA 1991)
AT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a) 365 days/year x 70 years for carcinogenic effects (USEPA, December, 1989a)

TABLE 3-43
DERMAL CONTACT WITH CHEMICALS IN SEDIMENTS FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING, FISHING AND WADING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	Day of the second	SKIN TO SEDIMENT	CONVER-	EXPO- SURE		EXPO- SURE		AVERAGIN	G TIME	1 - v. 1 - sv (999)	TIAL CHRON KE EXPsi (m	AGE TEST TEST CONTRACT	
	AGE	IMUM	SURFACE	ADHERENCE	FACTOR	FRE-	ABSORP-	DUR-	BODY	(days)		CARCINO	GENS	NONCARCI	NOGENS
	CONC.	CONC.	AREA	FACTOR	(1.0E-06	QUENCY	TION	ATION	WEIGHT	CARCIN-	NONCAR-				
ANALYTE	(mg/kg)	(mg/kg)	(cm2/event)	(mg/cm2)	kg/mg)	(days/yr)	FACTOR	(yts)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX
INORGANICS															
CADMIUM	0.5794	2.0000	1,960	. 0.50	1.00E-06	7	0.01	30	70	25,550	10,950	6.67E-10	2.30E-09	1.58E-09	5.37E-09
POLYCHLORINATED BIPHENYLS															
TOTAL PCBs (AROCHLOR)	0.06702	0.34770	1,960	0.50	1.00E-08	7	0.08	30	70	25,550	10,950	4.60E-10	2.40E-09	1.08E-09	5.60E-09

TABLE 3-44

DERMAL CONTACT WITH CHEMICALS IN SEDIMENTS FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'ISLAND EMBAYMENT FOR CURRENT CONDITIONS RECREATIONAL EXPOSURE WHILE SWIMMING, FISHING AND WADING IN RIVER, OFF-SHORE IMPACTS CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	SKIN	SKIN TO SEDIMENT	CONVER- SION	SURE		EXPO- SURE		AVERAGIN	IG TIME		FIAL CHRON		
	AGE	IMUM	SURFACE	ADHERENCE	FACTOR	FRE-	ABSORP-	DUR-	BODY	(days)	ša usicići, ži _{ograd} iji, i	CARCINO	GENS	NONCARC	INOGENS
[골폭종보급의 대표 존전 12] 이 기계 원인 및	CONC.	CONC.	AREA	FACTOR	(1.0E-06	QUENCY	TION	ATION	WEIGHT	CARCIN-	NONCAR-			(7 W) Mine	
ANALYTE	(mg/kg)	(mg/kg)	(cm2/event)	(mg/cm2)	kg/mg)	(days/yr)	FACTOR	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX
PESTICIDES		,			,			,							
ALDRIN	0.00035	0.00068	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	1.69E-12	3.28E-12	4.73E-12	9.18E-12
ALPHA-CHLORDANE	0.00062	0.00098	1,960	0.50	1.00E-06	7.	0.05	25	70	25,550	9,125	2.96E-12	4.70E-12	8.28E-12	1.32E-11
o,p'-DDD	0.00055	0.00082	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	2.62E-12	3.92E-12	7.34E-12	1.10E-11
o,p'-DDE	0.00022	0.00031	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	1.07E-12	1.47E-12	2.99E-12	4.12E-12
p,p' - DDD	0.00126	0.00349	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	6.02E-12	1.87E-11	1.68E-11	4.68E-11
p,p'-DDE	0.00074	0.00219	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	3.53E-12	1.05E-11	9.88E-12	2.94E-11
p,p'-DDT	0.00706	0.01179	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	3.38E-11	5.65E-11	9.47E-11	1.58E-10
POLYAROMATIC HYDROCARBONS															
ANTHRACENE	0.19420	0.40000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9.125	9.31E-09	1.92E-08	2.61E-08	5.37E-08
BENZO(A)ANTHRACENE	0.35460	0.68000	1,960	0.50	1.00E-06	7	0.50	25	70	25.550	9,125	1.70E-08	3.26E-08	4.76E-08	9.13E-08
BENZO(A)PYRENE	0.37600	0.70000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.80E-08	3.36E-08	5.05E-08	9.40E-08
BENZO(E)PYRENE	0.24220	0.48000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9.125	1.16E-08	2.30E-08	3.25E-08	6.44E-08
BENZO(G,H,I)PERYLENE	0.14460	0.29000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9.125	6.93E-09	1.39E-08	1.94E-08	3.89E-08
CHRYSENE	0.33700	0.63000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.62E-08	3.02E-08	4.52E-08	8.46E-08
DIBENZO(A,H)ANTHRACENE	0.05670	0.12000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.72E-09	5.75E-09	7.61E-09	1.61E-08
FLUORANTHENE	0.66120	1.20000	1,960	0.50	1.00E-06	7	0.50	25	70	25.550	9,125	3.17E-08	5.75E-08	8.88E-08	1.61E-07
FLUORENE	0.03820	0.08200	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.83E-09	3.93E09	5.13E-09	1.10E-08
INDENO(1,2,3-CD)PYRENE	0.18460	0.38000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	8.85E-09	1.82E-08	2.48E-08	5.10E-08
PERYLENE	0.10280	0.20000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9.125	4.93E-09	9.59E-09	1.38E-08	2.68E-08
PHENANTHRENE	0.34620	0.64000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.66E-08	3.07E-08	4.65E-08	8.59E-08
PYRENE	0.60440	1.10000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.90E-08	5.27E-08	8.11E-08	1.48E-07
POLYCHLORINATED BIPHENYLS										,			-12/2 00	50	
TOTAL PCBs (AROCHLOR)	0.05452	0.13360	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9.125	2.61E-09	6.41F_00	7.32E-09	1.79E-08

Dermal Contact with Chemicals in Surface Water For Current Conditions Recreational Exposures While Swimming, Fishing and Wading in River, Off-Shore Impacts Calculations for Potential Chronic Daily Intakes Portsmouth Naval Shipyard

Absorbed Dose (mg/kg - day) = $\frac{CS \times CF \times SA \times AF \times ABS \times EF \times ED}{BW \times AT}$

CS	=	Chemical Concentration in Surface Water (mg/kg)
CF	=	Conversion Factor (10 ⁶ kg/mg)
SA	=	Skin Surface Area Available for Contact (cm ² /event)
AF	=	Skin to Surface Water Adherence Factor (mg/cm ²)
ABS	=	Absorption Factor (unitless)
EF	=	Exposure Frequency (events/year)
ED	=	Exposure Duration (years)
BW	=	Body Weight (kg)
ΑT	=	Averaging Time (period over which exposure is averaged - days)

CS CF	=	Site-specific measured value 10 ⁻⁶ kg/mg
SA	=	1,960 cm ² /event = for adults (feet, hands) assumed estimates based on values given in USEPA, 1989c
AF	=	0.5 mg/cm ² (USEPA, 1989c)
ABS	=	Chemical Specific: Cadmium 1% (USEPA, 1992) Volatile organic compounds 50% (USEPA, 1989c) Semivolatile organic compounds (USEPA, 1989c) PAHs 5% (USEPA, 1989c) PCBs 6% (USEPA, 1992) Inorganics negligible (USEPA, 1989c) Pesticides: - high sorption to soils 5% (USEPA, June, 1989) - low sorption to soils 50% (USEPA, June, 1989)
EF ED BW AT	= = =	7 days/year (based on national average for swimming; USDOI in EPA 1988 by EPA 1989a) 30 years (USEPA 1991) 70 kg adult (USEPA 1991) 365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a) 365 days/year x 70 years for carcinogenic effects (USEPA, December, 1989a)

TABLE 3-45
DERMAL CONTACT WITH CHEMICALS IN SEDIMENTS FROM AROUND SEAVEY ISLAND FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING, FISHING AND WADING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	SKIN	SKIN TO SEDIMENT	CONVER- SION	EXPO- SURE		EXPO- SURE		AVERAGIN	G TIME	4.8,711.67	NAL CHRON		
	AGE	IMUM	SURFACE	ADHERENCE	FACTOR	FRE-	ABSORP-	DUR-	BODY	(days)		CARCINO	GENS	NONCARC	INOGENS
	CONC.	CONC.	AREA	FACTOR	(1.0E-06	QUENCY	TION	ATION	WEIGHT	CARCIN-	NONCAR-				
ANALYTE	(mg/kg)	(mg/kg)	(cm2/event)	(mg/cm2)	kg/mg)	(days/yr)	FACTOR	(утв)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX
PESTICIDES		,	,		,		,	,		,			,	,	
ALDRIN	0.00280	0.02240	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	1.34E-11	1.07E-10	3.75E-11	3.01E-10
ALPHA-CHLORDANE	0.00068	0.00292	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	3.26E-12	1.40E-11	9.13E-12	3.92E-11
HEXACHLOROBENZENE	0.00033	0.00086	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	1.59E-12	4.13E-12	4.46E-12	1.16E-11
LINDANE (GAMMA-BHC)	0.00046	0.00106	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	2.20E-12	5.10E-12	6.16E-12	1.43E-11
MIREX	0.00039	0.00120	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	1.86E-12	5.75E-12	5.20E-12	1.61E11
TRANS-NONACHLOR	0.00034	0.00148	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	1.63E-12	7.08E-12	4.58E-12	1.98E-11
o,p'DDD	0.00080	0.00372	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	3.83E-12	1.78E-11	1.07E-11	4.99E-11
o,p'-DDE	0.00058	0.00223	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	2.80E-12	1.07E-11	7.83E-12	2.99E-11
o,p'-DDT	0.00114	0.00950	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	5.47E-12	4.55E-11	1.53E-11	1.28E-10
p,p'-DDD	0.00303	0.01908	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	1.45E-11	9.15E-11	4.08E-11	2.56E-10
p,p'DDE	0.00186	0.00539	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	8.90E-12	2.58E-11	2.49E-11	7.24E-11
p,p'-DDT	0.01876	0.11956	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	9.00E-11	5.73E-10	2.52E-10	1.61E-09
POLYAROMATIC HYDROCARBONS															
ANTHRACENE	0.32050	1.90000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.54E-08	9.11E-08	4.30E-08	2.55E-07
BENZO(A)ANTHRACENE	0.61083	3.60000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.93E-08	1.73E-07	8.20E-08	4.83E-07
BENZO(A)PYRENE	0.56125	2.20000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.69E-08	1.05E-07	7.53E-08	2.95E-07
BENZO(E)PYRENE	0.40750	1.50000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.95E-08	7.19E-08	5.47E-08	2.01E-07
BENZO(G,H,I)PERYLENE	0.20996	0.55000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.01E-08	2.64E-08	2.82E-08	7.38E-08
CHRYSENE	0.60875	3.20000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.92E-08	1.53E-07	8.17E-08	4.30E-07
DIBENZO(A,H)ANTHRACENE	0.06275	0.24000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	3.01E-09	1.15E-08	8.42E-09	3.22E-08
FLUORANTHENE	1.58750	14.00000	1,960	0.50	1.00E-06	7	0,50	25	70	25,550	9,125	7.61E-08	6.71E-07	2.13E-07	1.88E-06
FLUORENE	0.09452	0.67500	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	4.53E-09	3.24E-08	1.27E-08	9.06E-08
INDENO(1,2,3-CD)PYRENE	0.22692	0.69000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.09E-08	3.31E-08	3.05E-08	9.26E-08
PERYLENE	0.18458	0.86000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	8.85E-09	4.12E-08	2.48E-08	1.15E-07
PHENANTHRENE	0.84479	6.20000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	4.05E-08	2.97E-07	1.13E-07	8.32E07
PYRENE	1.30979	10.00000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	6.28E-08	4.79E-07	1.76E-07	1.34E-06
POLYCHLORINATED BIPHENYLS															
TOTAL PCBs (AROCHLOR)	0.05965	0.34770	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.86E-09	1.67E-08	8.01E-09	4.67E-08

TABLE 3-46
DERMAL CONTACT WITH CHEMICALS IN SEDIMENT FROM CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING, FISHING AND WADING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	SKIN	SKIN TO SEDIMENT	CONVER-	SURE FRE-	ABSORP-	EXPO- SURE DUR- ATION	BODY	AVERAGIN	IG TIME		POTENTIAL CHRONIC DAILY INTAKE EXPai (mg/kg/day)			
	AGE	IMUM	SURFACE		The state of the second and the second					(days)		CARCINO	GENS	NONCARC	INOGENS	
	CONC.	CONC.	AREA							CARCIN-	NONCAR-			An address a few and a few of Address an open words, degree		
ANALYTE	(mg/kg)	(mg/kg)	(cm2/event)	(mg/cm2)	kg/mg)	(days/yr)	FACTOR	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX	
PESTICIDES																
ALDRIN	0.00063	0.00180	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	3.01E-12	8.63E-12	8.42E-12	2.42E-11	
ALPHA-CHLORDANE	0.00072	0.00237	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	3.44E-12	1.13E-11	9.63E-12	3.18E-11	
HEPTACHLOR EPOXIDE	0.00035	0.00090	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	1.66E-12	4.32E-12	4.64E-12	1.21E-11	
HEXACHLOROBENZENE	0.00112	0.00720	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	5.39E-12	3.45E-11	1.51E-11	9.67E-11	
LINDANE (GAMMA-BHC)	0.00038	0.00079	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	1.84E-12	3.78E-12	5.14E-12	1.06E-11	
MIREX	0.00057	0.00170	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	2.75E-12	8.15E-12	7.69E-12	2.28E-11	
TRANS-NONACHLOR	0.00052	0.00123	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	2.51E-12	5.91E-12	7.02E-12	1.66E-11	
o,p'-DDD	0.00184	0.00290	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	8.83E-12	1.39E-11	2.47E-11	3.89E-11	
o,p'-DDE	0.00114	0.00220	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	5.48E-12	1.05E-11	1.54E-11	2.95E-11	
o,p'-DDT	0.00117	0.00420	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	5.59E-12	2.01E-11	1.56E-11	5.64E-11	
p,p'-DDD	0.00726	0.01600	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	3.48E-11	7.67E-11	9.75E-11	2.15E-10	
p,p'-DDE	0.00345	0.00640	1,960	0.50	1.00E-08	7	0.05	25	70	25,550	9,125	1.66E-11	3.07E-11	4.64E-11	8.59E-11	
p,p'-DDT	0.00517	0.01411	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	2.48E-11	6.77E-11	6.93E-11	1.89E-10	
POLYAROMATIC HYDROCARBONS																
ANTHRACENE	0.09633	0.19000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	4.62E-09	9.11E-09	1.29E-08	2.55E-08	
BENZO(A)ANTHRACENE	0.28100	0.45000	1,960	0.50	1.00E06	7	0.50	25	70	25,550	9,125	1.35E-08	2.16E-08	3.77E-08	6.04E-08	
BENZO(A)PYRENE	0.33133	0.57000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.59E-08	2.73E-08	4.45E-08	7.65E-08	
BENZO(E)PYRENE	0.25667	0.42000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.23E-08	2.01E-08	3.45E-08	5.64E-08	
BENZO(G,H,I)PERYLENE	0.17167	0.38000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	8.23E-09	1.82E-08	2.30E-08	5.10E-08	
CHRYSENE	0.30200	0.52000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.45E-08	2.49E-08	4.05E-08	6.98E-08	
DIBENZO(A,H)ANTHRACENE	0.04253	0.08400	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.04E-09	4.03E-09	5.71E-09	1.13E-08	
FLUORANTHENE	0.58067	1.00000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.78E-08	4.79E-08	7.80E-08	1.34E-07	
FLUORENE	0.03157	0.08900	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.51E-09	3.31E-09	4.24E-09	9.26E-09	
INDENO(1,2,3-CD)PYRENE	0.17633	0.34000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	8.45E-09	1.63E-08	2.37E-08	4.56E-08	
PERYLENE	0.11553	0.17000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	5.54E-09	8.15E-09	1.55E-08	2.28E-08	
PHENANTHRENE	0.29700	0.53000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.42E-08	2.54E-08	3.99E-08	7.12E-08	
PYRENE	0.56033	0.94000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.69E-08	4.51E-08	7.52E-08	1.26E-07	
POLYCHLORINATED BIPHENYLS																
TOTAL PCBs (AROCHLOR)	0.08164	0.19040	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	3.91E-09	9.13E-09	1.10E-08	2.56E-08	

TABLE 3-47
DERMAL CONTACT WITH CHEMICALS IN SEDIMENT FROM YORK HARBOR SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURE WHILE SWIMMING, FISHING AND WADING IN RIVER, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-	SKIN	SKIN TO SEDIMENT	CONVER-	SURE FRE-	ABSORP-	EXPO- SURE - DUR-	BODY	AVERAGIN	G TIME	POTENTIAL CHRONIC DAILY INTAKE EXPsi (mg/kg/day)				
[10], [10] [10] [10] [10] [10] [10] [10] [10]	AGE	IMUM	SURFACE	ADHERENCE	E FACTOR					(days)		CARCINOGENS		NONCARCINOGENS		
	CONC.	CONC.	AREA	FACTOR	(1.0E-06	QUENCY	TION	ATION	WEIGHT	CARCIN-	NONCAR-					
ANALYTE	(mg/kg)	(mg/kg)	(cm2/event)	(mg/cm2)	kg/mg)	(days/yr)	FACTOR	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX	
PESTICIDES																
ALDRIN	0.00068	0.00072	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	3.27E-12	3.46E-12	9.14E-12	9.68E-12	
p,p'-DDT	0.00598	0.00691	1,960	0.50	1.00E-06	7	0.05	25	70	25,550	9,125	2.87E-11	3.31E-11	8.03E-11	9.28E-11	
POLYAROMATIC HYDROCARBONS																
ANTHRACENE	0.01500	0.01700	1,960	, 0.50	1.00E-06	7	0.50	25	70	25,550	9,125	7.19E-10	8.15E-10	2.01E-09	2.28E-09	
BENZO(A)ANTHRACENE	0.04450	0.06500	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.13E-09	3.12E-09	5.97E-09	8.73E-09	
BENZO(A)PYRENE	0.05550	0.08400	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.66E-09	4.03E-09	7.45E-09	1.13E-08	
BENZO(E)PYRENE	0.03900	0.06000	1,960	0.50	1.00E-08	7	0.50	25	70	25,550	9,125	1.87E-09	2.88E-09	5.24E-09	8.05E-09	
BENZO(G,H,I)PERYLENE	0.02450	0.04500	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.17E-09	2.16E-09	3.29E-09	6.04E-09	
CHRYSENE	0.05050	0.07600	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.42E-09	3.64E-09	6.78E-09	1.02E-08	
FLUORANTHENE	0.11200	0.15000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	5.37E-09	7.19E-09	1.50E-08	2.01E-08	
FLUORENE	0.00550	0.00600	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	2.64E-10	2.88E-10	7.38E-10	8.05E-10	
INDENO(1,2,3-CD)PYRENE	0.03150	0.05700	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	1.51E-09	2.73E-09	4.23E-09	7.85E-09	
PERYLENE	0.01400	0.02400	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	6.71E-10	1.15E-09	1.88E-09	3.22E-09	
PHENANTHRENE	0.06450	0.07400	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	3.09E-09	3.55E-09	8.66E-09	9.93E-09	
PYRENE	0.09450	0.13000	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	4.53E-09	6.23E-09	1.27E-08	1.75E-08	
POLYCHLORINATED BIPHENYLS																
TOTAL PCBs (AROCHLOR)	0.00810	0.01030	1,960	0.50	1.00E-06	7	0.50	25	70	25,550	9,125	3.88E-10	4.94E-10	1.09E-09	1.38E-09	

Ingestion of Chemicals in Surface Water For Current Conditions Recreational Exposures While Swimming, Fishing, and Wading, Off-Shore Impacts Calculations for Potential Chronic Daily Intake Portsmouth Naval Shipyard

Intake (mg/kg - day)	=	CW x CR x ET x EF x ED
		BW x AT

CW	=	Chemical concentration in Water (mg/liter)
CR	=	Contact Rate (liters/hour)
ET	==	Exposure Time (hours/event)
EF	=	Exposure Frequency (events/year)
ED	=	Exposure Duration (years)
BW	=	Body Weight (kg)
ΑT	=	Averaging Time (period over which exposure is averaged - days)

CW	=	Site-specific measured or modeled value
CR	=	.050 liters/hour (USEPA 1989c)
ET	=	2.6 hours/day (National average for swimming, USDOI in EPA 1988b, EPA 1989a)
EF	=	7 events/year (USEPA 1989a)
ED	=	30 years (USEPA 1991)
BW	=	70 kg (USEPA 1991)
ΑT	=	365 days/year x 30 years for noncarcinogenic effects (USEPA, December, 1989a)
		365 days/year for 70 years for carcinogenic effects (USEPA, December, 1989a)

TABLE 3-48
INGESTION OF CHEMICALS IN SURFACE WATER FOR CURRENT CONDITIONS FOR SAMPLES COLLECTED FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING AND WADING, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-						AVERAGING	TIME (days)	POTENTIAL CHRONIC DAILY INTAKE EXPsi (mg/kg/day)				
	AGE	IMUM	CONTACT	EXPOSURE	EXPOSURE	EXPOSURE	BODY				CARCINOGENS		NONCARCINOGENS	
	CONC.	CONC.	RATE	TIME	FREQUENCY	DURATION	WEIGHT	CARCIN-	NONCAR-		a reliable to account			
ANALYTE	(mg/l)	(mg/l)	(liters/hour)	(hours/event)	(events/year)	(утв)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX	
INORGANICS														
ALUMINUM	0.0349	0.1630	0.050	2.6	7	30	70	25,550	10,950	5.33E-07	2.49E-06	1.24E-06	5.81E-06	
IRON	0.0445	0.2200	0.050	2.6	7	30	70	25,550	10,950	6.80E-07	3.36E-06	1.59E-08	7.84E-06	
LEAD	0.0006	0.0034	0.050	2.6	7	30	70	25,550	10,950	9.65E-09	5.19E-08	2.25E-08	1.21E-07	

TABLE 3-49
INGESTION OF CHEMICALS IN SURFACE WATER FOR CURRENT CONDITONS
FOR SAMPLES COLLECTED FROM THE LOWER PISCATAQUA EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT
RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING AND WADING, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-						AVERAGING	TIME (days)	POTENTIAL CHRONIC DAILY INTAKE EXPsi (mg/kg/day)				
	AGE	IMUM	CONTACT	EXPOSURE	EXPOSURE	EXPOSURE	BODY				CARCINOGENS		NONCARCINOGENS	
	CONC.	CONC.	RATE	TIME	FREQUENCY	DURATION	WEIGHT	CARCIN-	NONCAR-		1,11,111			
ANALYTE	(mg/l)	(mg/l)	(liters/hour)	(hours/event)	(events/year)	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX	
INORGANICS														
ALUMINUM	0.0538	0.1630	0.050	2.6	7	25	70	25,550	9,125	6.84E-07	2.07E-06	1.92E-06	5.81E-06	
IRON	0.0541	0.2200	0.050	2.6	7	25	70	25,550	9,125	6.88E-07	2.80E-06	1.93E-06	7.84E-06	
LEAD	0.0006	0.0015	0.050	2.6	7	25	70	25,550	9,125	7.75E-09	1.91E-08	2.17E-08	5.34E-08	
NICKEL	0.0084	0.0460	0.050	2.6	7	25	70	25,550	9,125	1.07E-07	5.85E-07	3.00E-07	1.64E-06	

TABLE 3-50
INGESTION OF CHEMICALS IN SURFACE WATER FOR CURRENT CONDITIONS FOR SAMPLES COLLECTED FROM AROUND SEAVEY ISLAND RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING AND WADING, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-						AVERAGING	TIME (days)	POTENTIAL CHRONIC DAILY (NTAKE EXPsi (mg/kg/day)					
ANALYTE	CONC.	CONC.	CONTACT RATE	Maria de la composición del composición de la composición de la composición del composición de la composición del composición de la composición de la composición del compos	FREQUENCY (events/year)			CARCIN- OGENS	NONCAR-	CARCIN	OGENS MAX	NONCARO	INOGENS MAX		
INORGANICS	(mgn)	(3 · /	(III.O. C.II.O.L.I.)	(modia dia si)	(ovonta your)	() (a) (iii.	(ng)	OdLito	OINOGERS	AVC	MAX	AVG	MAX		
ALUMINUM	0.0298	0.1035	0.050	2.6	7	25	70	25,550	9,125	3.79E-07	1.32E-06	1.08E-08	3.69E-06		
IRON	0.0439	0.1080	0.050	2.6	7	25	70	25,550	9,125	5.58E-07	1.37E-06	1.56E-06	3.85E-06		
LEAD	0.0008	0.0034	0.050	2.6	7	25	70	25,550	9,125	1.00E-08	4.32E-08	2.80E-08	1.21E-07		

TABLE 3-51
INGESTION OF CHEMICALS IN SURFACE WATER FOR CURRENT CONDITIONS FOR SAMPLES COLLECTED FROM CLARK'S ISLAND EMBAYMENT
RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING AND WADING, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

						The Control of the Co	sahat ilakuadakki kilologi ari kilologia attaun ariba kilologia			POTENTIAL CHRONIC DAILY					
	AVER-	MAX-						AVERAGING	TIME (days)	INTAKE EXPsi (mg/kg/day)					
	AGE	IMUM	CONTACT	EXPOSURE	EXPOSURE	EXPOSURE	BODY	Sandjer dag		CARCIN	OGENS	NONCARC	INOGENS		
	CONC.	CONC.	RATE	TIME	FREQUENCY	DURATION	WEIGHT	CARCIN-	NONCAR-						
ANALYTE	(mg/l)	(mg/l)	(liters/hour)	(hours/event)	(events/year)	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX		
INORGANICS															
ALUMINUM	0.0256	0.0820	0.050	2.6	7	25	70	25,550	9,125	3.26E-07	1.04E-06	9.12E-07	2.92E-06		
IRON	0.0377	0.1090	0.050	2.6	7	25	70	25,550	9,125	4.79E-07	1.39E-06	1.34E-06	3.88E-06		

TABLE 3-52
INGESTION OF CHEMICALS IN SURFACE WATER FOR CURRENT CONDITIONS FOR SAMPLES COLLECTED FROM YORK HARBOR RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING AND WADING, OFF-SHORE IMPACTS
CALCULATIONS FOR POTENTIAL CHRONIC DAILY INTAKES
PORTSMOUTH NAVAL SHIPYARD

	AVER-	MAX-						POTENTIAL CHRONIC DAILY AVERAGING TIME (days) INTAKE EXPsi (mg/kg/day)					
	AGE	IMUM	CONTACT	EXPOSURE	EXPOSURE	EXPOSURE	BODY			CARCIN	OGENS	NONCARO	INOGENS
	CONC.	CONC.	RATE	TIME	FREQUENCY	DURATION	WEIGHT	CARCIN-	NONCAR-				
ANALYTE	(mg/l)	(mg/l)	(liters/hour)	(hours/eyent)	(events/year)	(yrs)	(kg)	OGENS	CINOGENS	AVG	MAX	AVG	MAX
INORGANICS									<u> </u>				
ALUMINIUM	0.0882	0.1880	0.050	2.6	7	25	70	25,550	9,125	1.12E-06	2.39E-06	3.14E-06	6.70E-06
IRON	0.1060	0.2980	0.050	2.6	7	25	70	25,550	9,125	1.35E-06	3.79E-06	3.78E-06	1.06E-05
LEAD	0.0006	0.0018	0.050	2.6	7	25	70	25,550	9,125	8.01E-09	2.29E-08	2.24E-08	6.41E-08

IEUBK MODEL SCREEN 2-4 DATA ENTRY FOR AIR

		Mussels	Lobster Tail, Whole Lobster, Flounder
Vary Air Con	centration by Year	No	No
Outdoor Air l	Lead Concentration (μg/m³)	0.100*	0.100*
Indoor Air Le	ead Concentration (% of Outdoor)	30.0	30.0
View/Change	Time Spent Outdoors	Default	Default
View/Change	Ventilation Rates	Default	Default
View/Change	Lung Absorption %	Default	Default

^{*} All background air lead samples were non-detects. Default value was used.

IEUBK MODEL SCREEN 2-5 DATA ENTRY FOR DIET

	Mussels	Lobster Tail, Whole Lobster, Flounder
View/Change Dietary Lead Intake	Default	Default
Use Alternate Diet Values	Yes	Yes
Change GI Values/Bioavailability	No	No

TABLE 3-55

IEUBK MODEL SCREEN 2-6 DATA ENTRY FOR DIET

	Mussels Average Ingestion Rate	Mussels Worst Case Ingestion	Lobster Tail, Whole Lobster, Flounder	Lobster Tail, Whole Lobster,	Weighted Average*			
		Rate	Average Ingestion Rate	Flounder Worst Case Ingestion Rate	Avg.	Worst Case		
Home Grown Fruits Concentration Percent	0.00 0	0.00	0.00 0	0.00 0	0.00	0.00		
Home Grown Vegetables Concentration Percent	0 0	0 0	0	0 0	0	0 0		
Fish From Fishing Concentration Percent	1.03 10.0	1.03 50.0	0.04 10.0	0.04 50.0	0.24 10.0	0.24 50.0		
Game Animals From Hunting Ethnic Preference Regional Preference						- -		

^{*} Weighted Average of Mussels, Lobster Tail, Whole Lobsters, and Flounder, Each Weighted Equally.

IEUBK MODEL SCREEN 2-7 DATA ENTRY FOR DRINKING WATER

	Mussels	Lobster Tail, Whole Lobster, Flounder
Enter Lead Concentration in Drinking Water (µg/L)	5.00*	5.00*
View/Change Drinking Water Intake	Default	Default
Use of Alternate Water Values	No	No
Change GI Values/Bioavailability	No	No

^{*} Represents municipal drinking water levels, Town of Kittery.

IEUBK MODEL SCREEN 2-9 DATA ENTRY FOR SOIL/DUST

	Mussels	Lobster Tail, Whole Lobster, Flounder
Soil Lead Levels (µg/g)	175*	175*
Indoor Dust Lead Levels (µg/g)	175	175
Soil/Dust Ingestion Weighting Factor	45.0	45.0
View/Change Amount of Soil/Dust Ingested Daily	Default	Default
Change GI Values/Bioavailability	No	No

^{*} Represents average soil lead concentration of samples collected on-site and off-site in areas removed from the SWMUs; should represent the community at large.

IEUBK MODEL SCREEN 2-15 MATERNAL DATA

Maternal Contribution Matrix: Infant Motel

Mother's Blood Lead Concentration at Birth μ g/dL: 2.50 (Default)

TABLE 5A
RANGE OF POTENTIAL SITE-WIDE RISKS FOR OFF-SHORE MEDIA FOR LOWER PISCATAQUA SAMPLE LOCATIONS
PORTSMOUTH NAVAL SHIPYARD.

	CUMULATIVE C	ARCINOGENIC RISK	CUMULATIVE NONCARCINOGENIC RISKS			
PATHWAY A TOTAL BELOW TO THE REPORT OF THE PARTY OF THE P	AVERAGE	MAXIMUM	AVERAGE	MAXIMUM		
TABLE 5-1 CONSUMPTION OF LOBSTER TAIL FLESH, RECREATIONAL EXPOSURES	1.81E-03	4.14E-03	7.60E+00	1.43E+00		
TABLE 5-6 CONSUMPTION OF LOBSTER TAIL FLESH FOR SUBSISTENCE FISHING	4.41E-03	1.01E-02	1.86E+01	3.49E+01		
TABLE 5-11 CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS), RECREATIONAL EXPOSURES	2.31E-03	5.19E-03	8.96E+00	1.73E+01		
TABLE 5–13 CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS), FOR SUBSISTENCE FISHING	5.67E-03	1.27E-02	2.19E+01	4.22E+01		
TABLE 5-15 CONSUMPTION OF MUSSELS, RECREATIONAL EXPOSURES	5.49E-04	1.44E-03	2.58E+00	6.52E+00		
TABLE 5-21 CONSUMPTION OF MUSSELS FOR SUBSISTENCE FISHING	1.34E-03	3.51E-03	6.30E+00	1.59E+01		
TABLE 5-27 CONSUMPTION OF FLOUNDER FILLET, RECREATIONAL EXPOSURES	9.03E-04	1.18E-03	3.78E+00	4.59E+00		
TABLE 5-32 CONSUMPTION OF FLOUNDER FILLET FOR SUBSISTENCE FISHING	2.21E-03	2.87E-03	9.25E+00	1.12E+01		
TABLE 5-37 INGESTION OF SEDIMENT, RECREATIONAL EXPOSURES	3.76E-07	1.33E-06	2.26E-03	5.16E-03		
TABLE 5-42 DERMAL CONTACT WITH SEDIMENT, RECREATIONAL EXPOSURES	3.54E09	1.85E-08	3.11E-06	1.07E-05		
TABLE 5-47 INGESTION OF SURFACE WATER, RECREATIONAL EXPOSURES	-	_	4.29E-07	2.00E-06		
TABLE 5-56 COMBINED RISKS CALCULATED FOR INGESTION OF MUSSELS AND DERMAL CONTACT WITH SEDIMENT, RECREATIONAL EXPOSURES	5.49E-04	1.44E-03	2.58E+00	6 .52E+00		
TABLE 5-57 COMBINED RISKS CALCULATED FOR INGESTION OF MUSSELS AND DERMAL CONTACT WITH SEDIMENT FOR SUBSISTENCE FISHING	1.34E-03	3. 5 1E-03	6.30E+00	1.59E+01		
TABLE 5-58 COMBINED RISKS CALCULATED FOR INGESTION OF SURFACE WATER AND SEDIMENT AND DERMAL CONTACT WITH SEDIMENT, RECREATIONAL EXPOSURES	3.80E-07	1.35E-06	2.26E-03	5.17E-03		
TABLE 5–59 COMBINED RISKS CALCULATED FOR INGESTION OF SEDIMENT, SURFACE WATER, LOBSTER TAIL FLESH, AND DERMAL CONTACT WITH SEDIMENT, RECREATIONAL EXPOSURES	1.81E-03	4.14E-03	7.60E+00	1.43E+01		

TABLE 5-1
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GEN	C RISKS		NONCARCINOGENIC RISKS						
	CHRONIC DAILY INTAKE (mg/kg/day)		ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRONIC DAILY INTAKE (mg/kg/day)		RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN		
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX	
INORGANICS													
ALUMINUM	2.13E-03	5.80E-03		ND	-	-	4.98E-03	1.35E-02	2.90E+00		1.72E-03	4.67E-03	
ARSENIC	8.56E-04	1.67E-03	1.75E+00		1.50E-03	2.92E-03	2.00E-03	3.89E-03	3.00E-04		6.66E+00	1.30E+01	
CADMIUM	1.87E-06	3.46E-06		ND	-	_	4.37E-06	8.06E-06	1.00E-03		4.37E-03	8.06E-03	
CHROMIUM	5.44E-05	7.83E-05		ND	-	_	1.27E-04	1.83E-04	5.00E-03		2.54E-02	3.65E-02	
COPPER	1.70E-03	1.85E-03		ND	_	-	3.98E-03	4.33E-03	3.70E-02		1.07E-01	1.17E-01	
IRON	5.09E-03	1.74E-02		ND	_	_	1.19E-02	4.06E-02		ND	_	_	
LEAD	1.27E-05	3.68E-05		ND	-	-	2.97E-05	8.58E-05		ND	-	-	
MANGANESE	2.18E-04	3.37E-04		ND	-	-	5.08E-04	7.87E-04	1.00E-01		5.08E-03	7.87E-03	
MERCURY	8.61E-05	1.11E-04		ND	_	_	2.01E-04	2.58E-04	3.00E-04		6.70E-01	8.60E-01	
NICKEL	3.75E-05	8.13E-05	-	ND	-	_	8.74E-05	1.90E-04	2.00E-02		4.37E-03	9.48E-03	
SILVER	4.57E-05	7.16E-05		ND	-	-	1.07E-04	1.67E-04	5.00E-03		2.13E-02	3.34E-02	
ZINC	5.41E-03	6.34E-03		ND	_	-	1.26E-02	1.48E-02	2.00E-01		6.31E-02	7.40E-02	
PESTICIDES													
ALDRIN	5.39E-08	1.13E-07	1.70E+01		9.16E-07	1.92E-06	1.26E-07	2.64E-07	3.00E-05		4.19E-03	8.80E-03	
ALPHA-CHLORDANE	4.47E-08	7.28E-08	1.30E+00		5.81E-08	9.46E-08	1.04E-07	1.70E-07	6.00E-05		1.74E-03	2.83E-03	
HEPTACHLOR	3.80E-08	4.88E-08	4.50E+00		1.71E-07	2.20E-07	8.88E-08	1.14E-07	5.00E-04		1.78E-04	2.28E-04	
HEPTACHLOR EPOXIDE	5.50E-08	1.56E-07	9.10E+00		5.01E-07	1.42E-06	1.28E-07	3.65E-07	1.30E-05		9.88E-03	2.81E-02	
HEXACHLOROBENZENE	1.33E-07	1.88E-07	1.60E+00		2.13E-07	3.01E-07	3.11E-07	4.39E-07	8.00E-04		3.88E-04	5.49E-04	
LINDANE (GAMMA-BHC)	5.00E-08	1.44E-07	1.30E+00		6.50E-08	1.87E-07	1.17E-07	3.35E-07	3.00E-04		3.89E-04	1.12E-03	
MIREX	3.99E-08	4.88E-08	1.80E+00		7.17E-08	8.79E-08	9.30E-08	1.14E-07	2.00E-04		4.65E-04	5.70E-04	
TRANS-NONACHLOR	5.07E-08	8.10E-08		ND	_	_	1.18E-07	1.89E-07		ND		_	
o,p'-DDD	5.42E-08	1.10E-07		ND	_	_	1.27E-07	2.56E-07		ND	-		
o,p'-DDE	4.12E-08	4.88E-08		ND	-	_	9.62E-08	1.14E-07		ND	-	_	
o,p'-DDT	4.12E-08	4.88E-08		ND	_	-	9.62E-08	1.14E-07	-	ND	-	_	
p,p'-DDD	6.02E-08	1.07E-07	2.40E-01		1.45E-08	2.57E-08	1.41E-07	2.50E-07	-	ND	_		
p,p'-DDE	2.35E-07	4.26E-07	3.40E-01		7.98E-08	1.45E-07	5.47E-07	9.94E-07		ND	_		
p,p'-DDT	1.59E-07	6.87E-07	3.40E-01		5.39E-08	2.34E-07	3.70E-07	1.60E-06	5.00E04		7.40E-04	3.21E-03	

TABLE 5-1
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GEN	C RISKS		NONCARCINOGENIC RISKS					
	CHRO	NIC		1 2			CHRONIC DAILY			CHEMIC	AL	
	DAIL	7	ORAL		CHEMICAL	-				SPECIFI	IC .	
	INTAK	Œ	SLOPE		SPECIFIC		INTAK	E		HAZARI	D	
	(mg/kg/day)		FACTOR		RISK		(mg/kg/day)		RfD	QUOTIE	NT	
ANALYTE	AVG	MAX	(mg/kg/day)	1 .	AVG	MAX	AVG	MAX	(mg/kg/day)	AVG	MAX	
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	4.89E-06	2.60E-05		ND	-		1.14E-05	6.08E-05	3.00E-01	3.80E-05	2.03E-04	
BENZO(A)ANTHRACENE	1.15E-05	4.96E-05	5.80E+00		6.69E-05	2.87E-04	2.69E-05	1.16E-04	N	-		
BENZO(A)PYRENE	1.23E-05	5.04E-05	5.80E+00		7.16E-05	2.92E-04	2.88E-05	1.18E-04	N	-		
BENZO(E)PYRENE	1.54E-05	5.7,1E-05		ND	-	-	3.60E-05	1.33E-04	N	-	T - =	
BENZO(G,H,I)PERYLENE	3.40E-06	1.08E-05		ND	_	-	7.92E-06	2.53E-05	4.00E-03	1.98E-03	6.32E-03	
CHRYSENE	1.98E-05	8.82E-05	5.80E+00		1.15E-04	5.12E-04	4.63E-05	2.06E-04	N) -	_	
FLUORANTHENE	6.08E-05	2.69E-04		ND	-	-	1.42E-04	6.27E-04	4.00E-02	3.55E-03	1.57E-02	
FLUORENE	4.65E-06	2.18E-05		ND	•		1.09E-05	5.10E-05	4.00E-02	2.71E-04	1.27E-03	
INDENO(1,2,3-CD)PYRENE	3.32E-06	1.10E-05	5.80E+00		1.93E-05	6.38E-05	7.75E-06	2.57E-05	NO	-	_	
PERYLENE	5.41E-06	1.76E-05		ND	_	-	1.26E-05	4.12E-05	N) –	-	
PHENANTHRENE	2.07E-05	1.06E-04		ND	•	<u> </u>	4.82E~05	2.47E-04	4.00E-03	1.21E-02	6.17E-02	
PYRENE	5.09E-05	2.18E-04		ND	1		1.19E-04	5.10E-04	3.00E-02	3.96E-03	1.70E-02	
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	4.25E-06	7.67E06	7.70E+00		3.27E-05	5.91E-05	9.92E-06	1.79E-05	N			
					AVG	MAX			· · · · · · · · · · · · · · · · · · ·	AVG	MAX	
UMULATIVE CARCINOGENIC RISK:				1.81E-03	4.14E-03	CUMULATIVE NONCARCINOGENIC B HAZARD QUOTIENT: 7			7.60E+00	1.43E+01		

TABLE 5-2
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NO	NCARCINOGE	NIC F	RISKS	
	CHRONIC DAILY INTAKE (mg/kg/day)		ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	Ē	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-1		AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	2.46E-03	3.82E-03		ND	-	_	5.75E-03	8.92E-03	2.90E+00		1.98E~03	3.08E-03
ARSENIC	4.12E-04	5.77E-04	1.75E+00		7.21E-04	1.01E-03	9.62E-04	1.35E-03	3.00E-04		3.21E+00	4.49E+00
CADMIUM	2.10E-06	3.46E-06		ND	_	_	4.90E-06	8.06E-06	1.00E-03		4.90E-03	8.06E-03
CHROMIUM	5.92E-05	5.98E-05		ND		_	1.38E-04	1.40E-04	5.00E-03		2.76E-02	2.79E-02
COPPER	1.71E-03	1.85E-03		ND	-	-	4.00E-03	4.33E-03	3.70E-02	<u> </u>	1.08E-01	1.17E-01
IRON	4.83E-03	6.70E-03		ND	-	_	1.13E-02	1.56E-02		ND.	_	_
LEAD	1.32E-05	1.39E-05		Ŋ	_		3.07E-05	3.25E-05		ND		-
MANGANESE	2.65E-04	3.37E-04		Z	_	-	6.17E-04	7.87E-04	1.00E-01		6.17E-03	7.87E-03
MERCURY	7.36E-05	7.36E-05		ND	<u> </u>	_	1.72E-04	1.72E-04	3.00E-04		5.73E-01	5.73E-01
NICKEL	6.51E-05	8.13E-05		ND	_	1	1.52E-04	1.90E04	2.00E-02	<u> </u>	7.59E-03	9.48E-03
SILVER	5.03E-05	7.16E-05		ND	-	-	1.17E-04	1.67E-04	5.00E-03		2.35E-02	3.34E-02
ZINC	4.76E-03	5.04E-03		D	-	-]	1.11E-02	1.18E-02	2.00E-01		5.56E-02	5.88E-02
PESTICIDES												
ALDRIN	8.94E-08	1.49E-07	1.70E+01		1.52E-06	2.53E-06	2.09E-07	3.48E-07	3.00E-05		6.95E-03	1.16E-02
ALPHA-CHLORDANE	3.04E-08	4.60E-08	1.30E+00		3.96E-08	5.98E-08	7.10E-08	1.07E-07	6.00E-05		1.18E-03	1.79E-03
HEPTACHLOR	2.38E-08	4.63E-08	4.50E+00		1.07E-07	2.08E07	5.55E-08	1.08E-07	5.00E-04		1.11E-04	2.16E-04
HEPTACHLOR EPOXIDE	3.52E-08	6.40E-08	9.10E+00		3.20E-07	5.83E-07	8.21E-08	1.49E-07	1.30E-05		6.32E-03	1.15E-02
HEXACHLOROBENZENE	4.95E-08	6.12E-08	1.60E+00		7.91E-08	9.79E-08	1.15E-07	1.43E-07	8.00E-04		1.44E-04	1.78E-04
LINDANE (GAMMA-BHC)	2.63E-08	2.98E-08	1.30E+00		3.42E-08	3.87E-08	6.14E-08	6.95E-08	3.00E-04		2.05E04	2.32E-04
MIREX	3.87E-08	4.63E-08	1.80E+00		6.96E-08	8.33E-08	9.02E-08	1.08E-07	2.00E-04		4.51E-04	5.40E-04
TRANS-NONACHLOR	5.01E-08	5.67E-08		ND	-	-	1.17E-07	1.32E-07		ND	-	-
o,p'-DDD	4.09E-08	4.63E-08		ND	-	-	9.54E-08	1.08E-07		ND	-	-
o,p'-DDE	4.09E-08	4.63E-08		ND	_	-	9.54E-08	1.08E-07		ND	-	-
o,p'-DDT	4.09E-08	4.63E-08		ND	-	-	9.54E-08	1.08E-07		ND	-	-
p,p'-DDD	5.14E-08	5.67E-08	2.40E-01		1.23E-08	1.36E-08	1.20E-07	1.32E-07		ND	-	-
p,p'-DDE	1.33E-07	1.77E-07	3.40E-01		4.51E-08	6.00E-08	3.09E-07	4.12E-07	-	ND	-	-
p,p'-DOT	6.09E-08	7.55E-08	3,40E-01		2.07E-08	2.57E-08	1.42E-07	1.76E-07	5.00E-04		2.84E-04	3.52E-04
ν,ν −νν i	J.V&L-VB	, .JJL=06	9.402.01	1	0, _ 00		*		0.00L V4	1	/	J.J 01

TABLE 5-2
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

CHRON DAILY INTAKI (mg/kg/d AVG	E ay) MAX	ORAL SLOPE FACTOR (mg/kg/day)-1		CHEMICAL SPECIFIC RISK	•	CHRON DAILY INTAKE (mg/kg/d		RfD		CHEMICAL SPECIFIC HAZARD	
INTAKI (mg/kg/d AVG	E (ay) MAX	SLOPE FACTOR		SPECIFIC RISK	•	INTAKE		PfD		HAZARD	
(mg/kg/d AVG	MAX	FACTOR		RISK				PfD			
AVG	MAX				······································	(mg/kg/d:	8V) I				_
		(mg/kg/day)→			1 1444					QUOTIENT	
.34E-05	i			AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
.34E-05			, ,								
	2.60E-05		ND		-	3.12E-05	6.08E-05	3.00E-01		1.04E-04	2.03E~04
.04E-05	4.96E-05	5.80E+00		1.77E-04	2.87E-04	7.10E-05	1.16E-04		ND	- I	
.12E-05	5.04E-05	5.80E+00		1.81E-04	2.92E-04	7.27E-05	1.18E-04		ND	-	_
.60E05	5.71E-05		ND	-	-	8.40E-05	1.33E-04		ND	-	
.21E-06	1.08E-05		ND		-	1.68E-05	2.53E-05	4.00E-03		4.20E-03	6.32E-03
.23E-05	8.82E-05	5.80E+00		3.03E-04	5.12E-04	1.22E-04	2.06E-04		ND	-	_
.57E-04	2.69E-04		ND	_	_	3.66E-04	6.27E-04	4.00E-02		9.14E-03	1.57E-02
.11E-05	2.18E-05		ND	_	- '	2.59E-05	5.10E-05	4.00E-02		6.48E-04	1.27E-03
.44E-06	1.10E-05	5.80E+00		4.32E-05	6.38E-05	1.74E-05	2.57E-05		ND	-	_
.20E-05	1.76E-05		ND	_	-	2.81E-05	4.12E-05		ND	- 1	<u>-</u>
.64E-05	1.06E-04		ND	<u>-</u>	-	1.31E-04	2.47E-04	4.00E-03		3.29E-02	6.17E-02
.27E-04	2.18E-04		ND	-	-	2.97E-04	5.10E-04	3.00E-02		9.89E-03	1.70E-02
.73E-06	2.82E-06	7.70E+00		2.10E-05	2.17E-05	6.36E-06	6.58E-06		ND	-	
				AVG	MAX					AVG	MAX
				1.455.02	'			NOGENIC		4.005+00	5,45E+00
3.12E-05 5.04E-05 3.60E-05 5.71E-05 7.21E-06 1.08E-05 5.23E-05 8.82E-05 1.57E-04 2.69E-04 1.11E-05 2.18E-05 7.44E-08 1.10E-05 1.20E-05 1.76E-05 5.64E-05 1.06E-04 1.27E-04 2.18E-04		12E-05 5.04E-05 5.80E+00 60E-05 5.71E-05 21E-06 1.08E-05 23E-05 8.82E-05 5.80E+00 57E-04 2.69E-04 11E-05 2.18E-05 44E-06 1.10E-05 5.80E+00 20E-05 1.76E-05 64E-05 1.06E-04 27E-04 2.18E-04	12E-05 5.04E-05 5.80E+00 60E-05 5.71E-05 ND 21E-06 1.08E-05 ND 23E-05 8.82E-05 5.80E+00 ND 11E-05 2.18E-05 ND 11E-05 2.18E-05 ND 20E-05 1.76E-05 ND 64E-05 1.06E-04 ND 27E-04 2.18E-04 ND	12E-05 5.04E-05 5.80E+00 1.81E-04 60E-05 5.71E-05 ND - 21E-06 1.08E-05 ND - 23E-05 8.82E-05 5.80E+00 3.03E-04 67E-04 2.69E-04 ND - 11E-05 2.18E-05 ND - 44E-06 1.10E-05 5.80E+00 4.32E-05 20E-05 1.76E-05 ND - 64E-05 1.06E-04 ND - 27E-04 2.18E-04 ND -	12E-05 5.04E-05 5.80E+00 1.81E-04 2.92E-04 60E-05 5.71E-05 ND 21E-06 1.08E-05 5.80E+00 3.03E-04 5.12E-04 5.7E-04 2.69E-04 ND	12E-05	12E-05 5.04E-05 5.80E+00 1.81E-04 2.92E-04 7.27E-05 1.18E-04 60E-05 5.71E-05 ND - 8.40E-05 1.33E-04 21E-06 1.08E-05 ND - 1.68E-05 2.53E-05 23E-05 8.82E-05 5.80E+00 3.03E-04 5.12E-04 1.22E-04 2.06E-04 57E-04 2.69E-04 ND - 3.66E-04 6.27E-04 11E-05 2.18E-05 ND - 2.59E-05 5.10E-05 44E-06 1.10E-05 5.80E+00 4.32E-05 6.38E-05 1.74E-05 2.57E-05 20E-05 1.76E-05 ND - 2.81E-05 4.12E-05 64E-05 1.06E-04 ND - 1.31E-04 2.47E-04 27E-04 2.18E-04 ND - 2.97E-04 5.10E-04 73E-06 2.82E-06 7.70E+00 2.10E-05 2.17E-05 6.36E-06 6.58E-06 AVG MAX	12E-05	12E-05	12E-05	

TABLE 5-3
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AROUND SEAVEY ISLAND RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	GENIC	RISKS	· ··· · · ·		NO	NCARCINOGI	ENIC F	RISKS	
·	CHRO DAIL' INTAK (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRO DAIL' INTAK (mg/kg/c	Y.,	ArD		CHEMICAI SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	-1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	7.02E-04	8.03E-04		ND	_	-	1.64E-03	1.87E-03	2.90E+00		5.65E-04	6.46E-04
ARSENIC	1.24E-03	1.67E-03	1.75E+00		2.17E-03	2.92E-03	2.89E-03	3.89E-03	3.00E-04		9.63E+00	1.30E+01
CADMIUM	1.97E-06	1.97E-06	1	ND	_	-	4.59E-06	4.59E-06	1.00E-03		4.59E-03	4.59E-03
CHROMIUM	4.43E-05	4.57E-05		ND	-	-	1.03E-04	1.07E-04	5.00E-03		2.07E-02	2.13E-02
COPPER	1.83E-03	1.85E-03		ND	_	_	4.27E-03	4.33E-03	3.70E-02		1.15E-01	1.17E-01
IRON	1.10E-03	1.50E-03		ND		_	2.57E-03	3.49E-03		ND	-	-
LEAD	5.23E-06	6.66E-06		ND	_	_	1.22E-05	1.55E-05		ND	-	-
MANGANESE	1.71E-04	2.37E-04		ND	-	-	3.99E-04	5.54E-04	1.00E-01		3.99E-03	5.54E-03
MERCURY	9.51E-05	9.80E-05		ND	_	_	2.22E-04	2.29E-04	3.00E-04		7.40E-01	7.62E-01
NICKEL	1.33E05	2.11E-05		ND	-		3.11E-05	4.93E-05	2.00E-02		1.56E-03	2.46E-03
SILVER	3.32E-05	4.48E-05		ND	-	-	7.74E-05	1.05E-04	5.00E-03		1.55E-02	2.09E-02
ZINC	6.20E-03	6.34E-03		ND	-	-	1.45E-02	1.48E-02	2.00E-01		7.23E-02	7.40E-02
PESTICIDES												
ALDRIN	4.66E-08	4.66E-08 *	1.70E+01		7.92E-07	7.92E-07	1.09E-07	1.09E-07 *	3.00E-05		3.62E-03	3.62E-03
ALPHA-CHLORDANE	4.66E-08	4.66E-08 *	1.30E+00		6.06E-08	6.06E-08	1.09E-07	1.09E-07 *	6.00E-05		1.81E-03	1.81E-03
HEPTACHLOR	4.66E-08	4.66E-08 *	4.50E+00		2.10E-07	2.10E-07	1.09E-07	1.09E-07 *	5.00E-04		2.17E-04	2.17E-04
HEPTACHLOR EPOXIDE	9.99E-08	1.53E-07	9.10E+00		9.09E-07	1.39E-06	2.33E-07	3.57E-07	1.30E05		1.79E-02	2.75E-02
HEXACHLOROBENZENE	1.86E-07	1.86E-07 *	1.60E+00		2.98E-07	2.98E-07	4.35E-07	4.35E-07 *	8.00E-04		5.44E-04	5.44E-04
LINDANE (GAMMA-BHC)	4.66E-08	4.66E-08 *	1.30E+00		6.06E-08	6.06E-08	1.09E-07	1.09E-07 *	3.00E-04		3.62E-04	3.62E-04
MIREX	4.66E-08	4.66E-08 *	1.80E+00		8.39E-08	8.39E-08	1.09E-07	1.09E-07 *	2.00E-04		5.44E-04	5.44E-04
TRANS-NONACHLOR	4.66E-08	4.66E-08 *		ND	-	_	1.09E07	1.09E-07 *	Ì	ND	_	_
o,p'-DDD	7.82E-08	1.10E-07	1	ND		-	1.83E-07	2.56E-07		ND		_
o,p'-DDE	4.66E-08	4.66E-08 *		ND	_		1.09E-07	1.09E-07 *		ND		-
o,p'-DDT	4.66E-08	4.66E-08 *		ND	-	_	1.09E-07	1.09E-07 *		ND	_	-
p,p'-DDD	4.66E-08	4.66E-08 *	2.40E-01		1.12E-08	1.12E-08	1.09E-07	1.09E-07 *	<u> </u>	ND	_	_
p,p'-DDE	3.73E-07	4.26E-07	3.40E-01		1.27E-07	1.45E-07	8.70E-07	9.94E-07	 	ND	_	_
p,p'-DDT	4.66E-08	4.66E-08 *	3,40E-01		1.58E-08	1.58E-08	1.09E-07	1.09E-07	5.00E-04		2.17E-04	2.17E-04

ND : NO DATA AVAILABLE

TABLE 5-3
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AROUND SEAVEY ISLAND RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

		* * *	CARCINO	GENIC	RISKS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NOI	NCARCINOG	ENIC F	NSKS	. :
	CHROI DAILY INTAK (mg/kg/c	E	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRON DAILY INTAK (mg/kg/d	E	RfD	:	CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	-1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS									1			
BENZO(A)PYRENE	9.32E-07	1.26E-06	5.80E+00		5.41E-06	7.34E-06	2.17E-06	2.95E-06		ND		_
FLUORANTHENE	1.78E-06	2.96E-06		ND	_	· -	4.16E-06	6.91E-06	4.00E-02		1.04E-04	1.73E-04
PHENANTHRENE	6.32E-07	8.65E-07		ND	-	-	1.48E-06	2.02E-06	4.00E-03		3.69E-04	5.05E-04
PYRENE	1.30E-06	2.00E-06		ND	_		3.03E-06	4.66E-06	3.00E-02	1	1.01E-04	1.55E-04
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	5.57E-06	7.66E-06	7.70E+00		4.29E-05	5.90E-05	1.30E-05	1.79E-05		ND	_	
				•	AVG	MAX			·	I	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:		2.22E-03	2. 99 E-03	CUMULATIVI HAZARD QU	E NONCARCINO OTIENT:	OGENIC		1.06E+01	1.40E+01			

ND : NO DATA AVAILABLE

TABLE 5-4
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	OGENI	C RISKS			NC	NCARCINOGI	ENIC F	RISKS	and a safer
	CHRO DAIL INTAI (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRO DAIL' INTAK (mg/kg/c	/ Œ	RfD		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	3.24E-03	5.80E-03		ND	_	_	7.55E-03	1.35E-02	2.90E+00		2.60E-03	4.67E-03
ARSENIC	9.18E-04	9.26E-04	1.75E+00		1.61E-03	1.62E-03	2.14E-03	2.16E-03	3.00E-04		7.14E+00	7.20E+00
CADMIUM	1.55E-06	2.41E-06		ND	-	-	3.62E-06	5.62E-06	1.00E-03		3.62E-03	5.62E-03
CHROMIUM	5.99E-05	7.83E-05		ND	-	_	1.40E-04	1.83E-04	5.00E-03	†	2.79E-02	3.65E-02
COPPER	1.57E-03	1.83E-03		ND		_	3.65E-03	4.27E-03	3.70E-02		9.88E-02	1.15E-01
IRON	9.33E-03	1.74E-02		ND	-	_	2.18E-02	4.06E-02		ND	_	_
LEAD	1.98E-05	3.68E-05		ND	_	_	4.62E-05	8.58E-05	-	ND	_	_
MANGANESE	2.17E-04	2.41E-04		ND	-	-	5.07E-04	5.82E-04	1.00E-01		5.07E-03	5.62E-03
MERCURY	8.33E-05	1.11E-04		ND	_	_	1.94E-04	2.58E-04	3.00E-04	i	6.48E-01	8.60E-01
NICKEL	3.40E-05	5.48E-05		ND	-	-	7.93E~05	1.28E-04	2.00E-02		3.96E-03	6.39E-03
SILVER	5.37E-05	5.48E-05		ND	_		1.25E-04	1.28E-04	5.00E-03		2.50E-02	2.56E-02
ZINC	5.25E-03	5.81E-03		ND	-		1.23E-02	1.35E-02	2.00E-01		6.13E-02	6.77E-02
PESTICIDES												
ALDRIN	3.65E-08	4.88E-08	1.70E+01		6.20E-07	8.30E-07	8.51E-08	1.14E-07	3.00E-05		2.84E-03	3.80E-03
ALPHA-CHLORDANE	5.15E-08	7.28E-08	1.30E+00		6.70E-08	9.46E-08	1.20E-07	1.70E-07	6.00E-05	1	2.00E-03	2.83E-03
HEPTACHLOR	4.00E-08	4.88E-08	4.50E+00		1.80E-07	2.20E-07	9.32E-08	1.14E-07	5.00E-04		1.86E-04	2.28E-04
HEPTACHLOR EPOXIDE	3.87E-08	5.16E-08	9.10E+00		3.52E-07	4.70E-07	9.04E-08	1.20E-07	1.30E-05		6.95E-03	9.26E-03
HEXACHLOROBENZENE	1.52E-07	1.88E-07	1.60E+00		2.43E-07	3.01E-07	3.54E-07	4.39E-07	8.00E-04		4.42E-04	5.49E-04
LINDANE (GAMMA-BHC)	7.13E-08	1.44E-07	1.30E+00		9.27E-08	1.87E-07	1.66E-07	3.35E-07	3.00E-04		5.55E-04	1.12E-03
MIREX	4.00E-08	4.88E-08	1.80E+00		7.19E-08	8.79E-08	9.32E-08	1.14E-07	2.00E-04		4.66E-04	5.70E-04
TRANS-NONACHLOR	5.57E-08	8.10E-08		ND	-	_	1.30E-07	1.89E-07		ND	_	†
o.p'-DDD	4.69E-08	4.88E-08	· · · · · · · · · · · · · · · · · · ·	ND		- 1	1.09E-07	1.14E-07		ND	-	_
o,p°-DDE	3.77E-08	4.88E-08		ND			8.79E-08	1.14E-07		ND		
o,p'-DDT	3.77E-08	4.88E-08		ND		_	8.79E-08	1.14E-07		ND	_	_
p,p'-DDD	7.32E-08	1.07E-07	2.40E-01		1.76E-08	2.57E-08	1.71E-07	2.50E-07		ND	_	
p,p'-DDE	2.09E-07	2.67E-07	3.40E-01	\vdash	7.11E-08	9.09E-08	4.88E-07	6.24E-07		ND		
p,p'-DDT	2.98E-07	6.87E-07	3.40E-01		1.01E-07	2.34E-07	6.96E-07	1.60E-06	5.00E-04	- 	1.39E-03	3.21E-03

TABLE 5-4
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NC	NCARCINOGI	ENIC I	RISKS	
	CHRO DAIL' INTAK (mg/kg/c	γ	ORAL SLOPE FACTOR		CHEMICA SPECIFIC RISK	.	CHROI DAILY INTAK (mg/kg/c	E	8fD		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	2.20E-06	4.93E-06		ND	-	-	5.14E-06	1.15E-05	3.00E-01	ŀ	1.71E-05	3.83E-05
BENZO(A)ANTHRACENE	6.28E-06	1.17E-05	5.80E+00		3.64E-05	6.80E-05	1.47E-05	2.73E-05		ND	-	_
BENZO(A)PYRENE	7.40E-06	1.33E-05	5.80E+00		4.29E-05	7.72E-05	1.73E-05	3.11E-05	•	ND	_	_
BENZO(E)PYRENE	1.15E-05	1.86E-05		ND			2.68E-05	4.35E-05		ND	-	-
BENZO(G,H,I)PERYLENE	2.68E-06	4.26E-06		ND			6.26E-06	9.94E-06	4.00E-03		1.56E-03	2.49E-03
CHRYSENE	1.11E-05	1.73E-05	5.80E+00		6.41E-05	1.00E-04	2.58E-05	4.04E-05		ND	_	-
FLUORANTHENE	3.62E-05	6.39E-05	-	ND	-	-	8.45E-05	1.49E-04	4.00E-02		2.11E-03	3.73E-03
FLUORENE	3.30E-06	6.39E-06		ND	-	_	7.70E-06	1.49E-05	4.00E-02		1.93E-04	3.73E-04
INDENO(1,2,3-CD)PYRENE	2.47E-06	4.13E-06	5.80E+00		1.43E-05	2.39E-05	5.77E-06	9.63E-06		ND	_	-
PERYLENE	4.32E-06	6.66E-06		ND	•	-	1.01E-05	1.55E-05		ND	-	-
PHENANTHRENE	1.02E-05	1.73E-05		DA	-		2.38E-05	4.04E-05	4.00E-03		5.96E-03	1.01E-02
PYRENE	3.31E-05	6.52E-05		ND	-	-	7.72E-05	1.52E-04	3.00E-02		2.57E-03	5.07E-03
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	4.41E-06	5.77E-06	7.70E+00		3.39E-05	4.44E-05	1.03E-05	1.35E-05		ND	_	_
					AVG	MAX					AVG	MAX
CHARLE ATIVE CARCING CENTS PION							CUMULATIV		NOGENIC		0.045.00	0.075.00
CUMULATIVE CARCINOGENIC HISK:	LATIVE CARCINOGENIC RISK:						HAZARD Q	OOHENI:			8.04E+00	8.37E+00

TABLE 5-5
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT YORK HARBOR SAMPLE LOCATIONS
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	BENIC	RISKS			NO	NCARCINOGE	NIC R	ISKS	
	CHROI DAILY INTAK (mg/kg/s	/ Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	• • • • • • • • • • • • • • • • • • •	CHRON DAILY INTAKI (mg/kg/d		RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)	4.	AVG	MAX
PESTICIDES												
ALDRIN	2.63E-08	2.63E-08 *	1.70E+01		4.47E-07	4.47E-07	6.14E-08	6.14E-08 *	3.00E-05		2.05E-03	2.05E-03
ALPHA-CHLORDANE	8.08E-08	8.08E-08 *	1.30E+00		1.05E-07	1.05E-07	1.89E-07	1.89E-07 *	6.00E-05		3.14E-03	3.14E-03
HEPTACHLOR	4.63E-08	4.63E-08 *	4.50E+00		2.08E-07	2.08E-07	1.08E-07	1.08E-07 *	5.00E-04		2.16E-04	2.16E-04
HEPTACHLOR EPOXIDE	7.55E-08	7.55E-08 *	9.10E+00		6.87E-07	6.87E-07	1.76E-07	1.76E-07 *	1.30E-05		1.35E-02	1.35E-02
HEXACHLOROBENZENE	4.50E-08	4.50E-08 *	1.60E+00		7.20E-08	7.20E-08	1.05E-07	1.05E-07 *	8.00E-04		1.31E-04	1.31E-04
LINDANE (GAMMA-BHC)	2.38E-08	2.38E-08 *	1.30E+00		3.09E-08	3.09E-08	5.55E-08	5.55E-08 *	3.00E-04		1.85E-04	1.85E-04
MIREX	4.63E-08	4.63E-08 *	1.80E+00		8.33E-08	8.33E-08	1.08E-07	1.08E-07 *	2.00E-04		5.40E-04	5.40E-04
TRANS-NONACHLOR	4.15E-08	4.15E-08 *		ND	_	_	9.69E-08	9.69E-08 *		ND	_	_
o,p'-DDD	4.63E-08	4.63E-08 *		ND	-	_	1.08E-07	1.08E-07 *		ND	-	
o,p'-DDE	4.63E-08	4.63E-08 *		ND	_	<u> </u>	1.08E-07	1.08E-07 *	ļ	ND		
o,p'-DDT	4.63E-08	4.63E-08		ND	-		1.08E-07	1.08E-07 *	1	ND	_	
p,p'-DDD	1.25E-07	1.25E-07	2.40E-01		3.00E-08	3.00E-08	2.91E-07	2.91E-07 *		ND		
p,p'-DDE	2.57E-07	2.57E-07 *	3.40E-01		8.73E-08	8.73E-08	5.99E-07	5.99E-07 *		ND		
p.p'-DDT	6.02E-08	6.02E-08 *	3.40E-01		2.05E-08	2.05E-08	1.41E-07	1.41E-07 *	5.00E-04		2.81E-04	2.81E-04
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	4.09E-06	4.09E-06 *	7.70E+00		3.15E-05	3.15E-05	9.54E-06	9.54E-06 *		ND	_	
				-	AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	JMULATIVE CARCINOGENIC RISK:							E NONCARCIN OTIENT:	OGENIC		2.01E-02	2.01E-02

ND: NO DATA AVAILABLE

TABLE 5-6
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GEN	C RISKS	35-4	The state of the s	NC	NCARCINOGE	ENIC F	RISKS	0.e
ANALYTE	CHRC DAIL INTAR (mg/kg/	r Œ	ORAL SLOPE FACTOR (mg/kg/day)-		CHEMICAL SPECIFIC RISK AVG	MAX	CHRO DAIL) INTAK (mg/kg/k	Œ	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	it
INORGANICS		MAX	(mg/kg/day)-	L	AVG	MAX	AYG	MAX	(mg/kg/day)	N	AVG	MAX
ALUMINUM	5.21E-03	1.42E-02		ND		_	1,22E-02	3.31E-02	2.90E+00		4.20E-03	1.14E-02
ARSENIC	2.09E-03	4.08E-03	1.75E+00	""	3.66E-03	7.13E-03	4.88E-03	9.51E-03	3.00E-04		1.63E+01	3.17E+01
CADMIUM	4.58E-06	8.45E-06	102.00	ND	- 0.002 00	7.102-03	1.07E-05	1.97E-05	1.00E-03		1.03E+07	1.97E-02
CHROMIUM	1.33E-04	1.91E-04		ND	_		3.11E-04	4.47E-04	5.00E-03	 	6.21E-02	8.93E-02
COPPER	4.17E-03	4.53E-03		ND	_	_	9.72E-03	1.06E-02	3.70E-02		2.63E-01	2.86E-01
IRON	1.24E-02	4.26E-02		ND		_	2.90E-02	9.93E-02	3.70L-02	ND	2.032-01	2.802-01
LEAD	3.11E-05	8.99E-05		ND			7.26E-05	2.10E-04		ND		-
MANGANESE	5.32E-04	8.24E-04		ND			1.24E-03	1.92E-03	1.00E-01	110	1.24E-02	1.92E-02
MERCURY	2.10E-04	2.70E-04		ND		_	4.91E-04	6.31E-04	3.00E-04		1.64E+00	2.10E+00
NICKEL	9.15E-05	1.99E-04		ND	-	_	2.14E-04	4.63E-04	2.00E-02	-	1.07E-02	2.32E-02
SILVER	1.12E-04	1.75E-04		ND	_	-	2.61E-04	4.09E-04	5.00E-03	\vdash	5.21E-02	8.17E-02
ZINC	1.32E-02	1.55E-02		ND	_	_	3.08E-02	3.62E-02	2.00E-01		1.54E~01	1.81E-01
PESTICIDES			_				0.000		2.002 01		1.042 01	1.012 01
ALDRIN	1.32E-07	3.64E-07	1.70E+01		2.24E-06	6.19E-06	3.07E-07	8.50E-07	3.00E-05		1.02E-02	2.83E-02
ALPHA-CHLORDANE	1.09E-07	1.78E-07	1.30E+00		1.42E-07	2.31E-07	2.55E-07	4.15E-07	6.00E-05		4.25E-03	6.92E-03
HEPTACHLOR	9.30E-08	1.19E-07	4.50E+00		4.18E-07	5.37E-07	2.17E-07	2.78E-07	5.00E-04		4.34E-04	5.57E-04
HEPTACHLOR EPOXIDE	1.35E-07	3.72E-07	9.10E+00		1.22E-06	3.38E-06	3.14E-07	8.68E-07	1.30E-05		2.41E-02	6.68E-02
HEXACHLOROBENZENE	3.25E-07	4.60E-07	1.60E+00		5.21E-07	7.37E-07	7.59E-07	1.07E-06	8.00E-04		9.49E-04	1.34E-03
LINDANE (GAMMA-BHC)	1.22E-07	3.51E-07	1.30E+00		1.59E-07	4.57E-07	2.85E-07	8.20E-07	3.00E-04		9.51E-04	2.73E-03
MIREX	9.74E-08	1.19E-07	1.80E+00		1.75E-07	2.15E-07	2.27E-07	2.78E-07	2.00E-04		1.14E-03	1.39E-03
TRANS-NONACHLOR	1.24E-07	1.98E-07		ND	_	_	2.89E-07	4.62E-07		ND	-	
o,p'-DDD	1.33E-07	2.69E-07		ND	-	_	3.09E-07	6.27E-07		ND		· -
o,p'-DDE	1.01E-07	1.19E-07		ND		_	2.35E-07	2.78E-07		ND		
o,p'-DDT	1.01E-07	1.19E-07		ND	_	_	2.35E-07	2.78E-07	·	ND		_
p,p'-DDD	1.47E-07	2.62E-07	2.40E-01		3.53E-08	6.29E-08	3.44E-07	6.12E-07		ND		
p,p'-DDE	5.73E-07	1.04E-06	3.40E-01		1.95E-07	3.54E-07	1.34E-06	2.43E-06		ND		
p,p'-DDT	3.87E-07	1.68E~06	3.40E-01		1.32E-07	5.71E-07	9.04E-07	3.92E-06	5.00E-04	110	1.81E-03	7.84E-03

TABLE 5-6
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

		:	CARCING	GENI	CRISKS			NO	NCARCINOGE	NIC F	IISKS	eli alia a are d
	CHRO DAILY INTAK (mg/kg/c	Œ	ORAL SLOPE FACTOR		CHEMICAI SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	1.20E-05	6.37E-05		ND	-	-	2.79E-05	1.49E-04	3.00E-01		9.30E-05	4.95E-04
BENZO(A)ANTHRACENE	2.82E-05	1.21E-04	5.80E+00		1.63E-04	7.03E-04	6.58E-05	2.83E-04		ND	_	-
BENZO(A)PYRENE	3.02E-05	1.23E-04	5.80E+00		1.75E-04	7.15E-04	7.04E-05	2.88E-04	<u> </u>	ND	_	_
BENZO(E)PYRENE	3.77E-05	1.40E-04		ND	-	-	8.79E-05	3.26E-04		ND	_	_
BENZO(G,H,I)PERYLENE	8.30E-06	2.65E-05		ND	-	_	1.94E-05	6.18E-05	4.00E-03		4.84E-03	1.55E-02
CHRYSENE	4.85E-05	2.16E-04	5.80E+00		2.81E-04	1.25E-03	1.13E-04	5.03E-04		ND	_	_
FLUORANTHENE	1.49E-04	6.57E-04		ND	-	-	3.47E-04	1.53E-03	4.00E-02		8.67E-03	3.83E-02
FLUORENE	1.14E-05	5.34E-05		ND	_	-	2.65E-05	1.25E-04	4.00E-02		6.63E-04	3.11E-03
INDENO(1,2,3-CD)PYRENE	8.12E-06	2.69E-05	5.80E+00		4.71E-05	1.56E-04	1.89E-05	6.28E-05		ND	-	-
PERYLENE	1.32E-05	4.31E-05		ND	_	_	3.09E-05	1.01E-04		ND		_
PHENANTHRENE	5.05E-05	2.59E-04		ND	_	_	1.18E-04	6.04E-04	4.00E-03		2.95E-02	1.51E-01
PYRENE	1.24E-04	5.34E-04		ND		-	2.90E-04	1.25E-03	3.00E-02		9.67E-03	4.15E-02
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	1.04E-05	1.88E-05	7.70E+00		8.00E-05	1.44E-04	2.42E-05	4.38E-05		ND	-	_
		13.25			AVG	MAX		5 1 1 1 1 1	<u> </u>	1944	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	IMULATIVE CARCINOGENIC RISK:							E NONCARCI OTIENT:	NOGENIC		1.86E+01	3.49E+01

TABLE 5-7
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	la da		CARCINO	GENIC	RISKS			NC	NCARCINOGE	NIC F	RISKS	
	CHRO DAIL' INTAK (mg/kg/c	Y Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	, 114, 11	CHROI DAILY INTAK (mg/kg/d	, ili ili ili ili ili ili ili ili ili il	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	Carl Asserting Country of the Countr
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	1.81E-02	2.81E-02		ND	_	-	4.23E-02	6.57E-02	2.90E+00		1.46E-02	2.26E-02
ARSENIC	3.03E-03	4.25E-03	1.75E+00		5.31E-03	7.43E-03	7.08E-03	9.91E-03	3.00E-04		2.36E+01	3.30E+01
CADMIUM	1.55E-05	2.54E-05		ND	-	_	3.61E-05	5.93E-05	1.00E-03		3.61E-02	5.93E-02
CHROMIUM	4.35E-04	4.40E-04		ND	-	_	1.02E-03	1.03E-03	5.00E-03		2.03E-01	2.05E-01
COPPER	1.26E-02	1.36E-02		ND	-	-	2.94E-02	3.18E-02	3.70E-02		7.96E-01	8.60E-01
IRON	3.55E-02	4.93E-02		ND	-	-	8.29E-02	1.15E-01		ND	_	_
LEAD	9.68E-05	1.03E-04		ND.	1	-	2.26E-04	2.39E-04		ND	-	_
MANGANESE	1.95E-03	2.48E-03		ND		}	4.54E-03	5.79E-03	1.00E-01		4.54E-02	5.79E-02
MERCURY	5.42E-04	5.42E-04 *		ND	ı		1.26E-03	1.26E-03	3.00E-04		4.21E+00	4.21E+00
NICKEL	4.79E-04	5.98E-04		2	-	_	1.12E-03	1.40E-03	2.00E-02		5.58E-02	6.98E-02
SILVER	3.70E-04	5.27E-04		ND	-	-	8.63E-04	1.23E-03	5.00E-03		1.73E-01	2.46E-01
ZINC	3.50E-02	3.71E-02		ND	-	_	8.17E-02	8.65E-02	2.00E-01		4.09E-01	4.32E-01
PESTICIDES												
ALDRIN	6.58E-07	1.10E-06	1.70E+01		1.12E-05	1.86E-05	1.53E-08	2.56E-08	3.00E-05		5.12E-02	8.53E-02
ALPHA-CHLORDANE	2.24E-07	3.38E-07	1.30E+00		2.91E-07	4.40E-07	5.23E-07	7.89E-07	6.00E-05		8.71E-03	1.32E-02
HEPTACHLOR	1.75E-07	3.41E-07	4.50E+00		7.87E-07	1.53E-06	4.08E-07	7.95E-07	5.00E-04		8.16E-04	1.59E-03
HEPTACHLOR EPOXIDE	2.59E-07	4.71E-07	9.10E+00		2.36E-06	4.29E-06	6.04E-07	1.10E-06	1.30E-05		4.65E-02	8.46E-02
HEXACHLOROBENZENE	3.64E-07	4.50E-07	1.60E+00		5.82E-07	7.20E-07	8.49E-07	1.05E-06	8.00E-04		1.06E-03	1.31E-03
LINDANE (GAMMA-BHC)	1.94E-07	2.19E-07	1.30E+00		2.52E-07	2.85E-07	4.52E-07	5.12E-07	3.00E-04		1.51E-03	1.71E-03
MIREX	2.85E-07	3.41E-07	1.80E+00		5.12E-07	6.13E-07	6.64E-07	7.95E07	2.00E04		3.32E-03	3.97E-03
TRANS-NONACHLOR	3.69E-07	4.18E-07	1	ND	<u> </u>	-1	8.60E-07	9.74E-07	· · · · · · · · · · · · · · · · · · ·	ND	-	-
o,p'-DDD	3.01E-07	3.41E-07		ND	_	-	7.02E-07	7.95E-07		ND	-	_
o,p'-DDE	3.01E-07	3.41E-07		ND	-	-	7.02E-07	7.95E-07		ND	_	_
o,p'-DDT	3.01E-07	3.41E-07		ND	-	-	7.02E-07	7.95E-07		ND	-	j
p,p'DDD	3.78E-07	4.18E-07	2.40E-01		9.07E-08	1.00E07	8.82E-07	9.74E-07		ND	_	_
p,p'-DDE	9.75E-07	1.30E-06	3.40E-01		3.32E-07	4.42E-07	2.28E-06	3.03E-06		ND	_	
p,p'-DDT	4.48E-07	5.55E-07	3.40E-01		1.52E-07	1.89E-07	1.05E-06	1.30E-06	5.00E-04		2.09E-03	2.59E-03

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 5-7
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	GENIC	RISKS			NO	NCARCINOGE	NIC P	ISKS	
	CHROI DAILY INTAK (mg/kg/k	r E	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRON DAILY INTAK (mg/kg/d	E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	9.83E-05	1.92E-04		ND	-	-	2.29E~04	4.47E-04	3.00E-01		7.64E-04	1.49E-03
BENZO(A)ANTHRACENE	2.24E-04	3.65E-04	5.80E+00		1.30E-03	2.12E-03	5.23E-04	8.51E-04		ND	-	•
BENZO(A)PYRENE	2.29E-04	3.71E-04	5.80E+00		1.33E-03	2.15E-03	5.35E-04	8.65E-04		ND	ı	•
BENZO(E)PYRENE	2.65E-04	4.20E-04		ND	-	-	6.18E-04	9.81E-04		DN	-	1
BENZO(G,H,I)PERYLENE	5.30E-05	7.97E-05		ND	-	-	1.24E-04	1.86E-04	4.00E-03		3.09E-02	4.65E-02
CHRYSENE	3.85E-04	6.49E-04	5.80E+00		2.23E-03	3.76E-03	8.98E-04	1.51E-03		ND	_	-
FLUORANTHENE	1.15E-03	1.98E-03		ND	_	_	2.69E-03	4.62E-03	4.00E-02		6.73E-02	1.15E-01
FLUORENE	8.17E-05	1.61E-04		ND	_	-	1.91E-04	3.75E-04	4.00E-02		4.77E-03	9.38E-03
INDENO(1,2,3-CD)PYRENE	5.47E-05	8.10E-05	5.80E+00		3.18E-04	4.70E-04	1.28E-04	1.89E-04		ND	-	_
PERYLENE	8.85E-05	1.30E-04		ND	_		2.06E-04	3.03E-04		ND	_	
PHENANTHRENE	4.15E-04	7.79E-04		ND			9.68E-04	1.82E-03	4.00E-03		2.42E-01	4.54E-01
PYRENE	9.35E-04	1.61E-03		ND	_		2.18E-03	3.75E-03	3.00E-02		7.27E-02	1.25E-01
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	2.73E-06	2.82E-06	7.70E+00		2.10E-05	2.17E-05	6.36E06	6.58E-06		ND	-	
		AVG	MAX					AVG	MAX			
CUMULATIVE CARCINOGENIC RISK:	MULATIVE CARCINOGENIC RISK:							E NONCARCI OTIENT:	NOGENIC		3.01E+01	4.01E+01

ND : NO DATA AVAILABLE

TABLE 5-8
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AROUND SEAVEY ISLAND FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	GENIC	RISKS			NOI	NCARCINOGE	NIC F	RISKS	
	CHRO DAIL' INTAK	Y	ORAL SLOPE		CHEMICAL SPECIFIC	-	CHRO DAIL) INTAK	1		: s <u>;</u>	CHEMICA SPECIFIC HAZARD	;
•	(mg/kg/	day)	FACTOR		RISK		(mg/kg/c	day)	RfD		QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	-1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	5.16E-03	5.91E-03		ND	-	-	1.20E-02	1.38E-02	2.90E+00		4.15E-03	4.76E-03
ARSENIC	9.11E-03	1.23E-02	1.75E+00		1.59E-02	2.15E-02	2.13E-02	2.86E-02	3.00E-04		7.08E+01	9.54E+01
CADMIUM	1.45E-05	1.45E-05		ND	_	_	3.37E-05	3.37E-05	1.00E-03		3.37E-02	3.37E-02
СНЯОМІИМ	3.26E-04	3.36E-04		ND	_	-	7.60E-04	7.85E-04	5.00E-03		1.52E-01	1.57E-01
COPPER	1.35E-02	1.36E-02		ND	_	_	3.14E-02	3.18E-02	3.70E-02		8.49E-01	8.61E-01
IRON	8.11E-03	1.10E02		ND	-		1.89E-02	2.57E-02		ND	-	-
LEAD	3.85E-05	4.90E05		ND	-	-	8.98E-05	1.14E-04		ND	_	_
MANGANESE	1.26E-03	1.75E-03]	ND	_	- 1	2.93E-03	4.08E-03	1.00E-01		2.93E-02	4.08E-02
MERCURY	7.00E-04	7.21E-04		ND	-	-	1.63E-03	1.68E-03	3.00E-04		5.44E+00	5.61E+00
NICKEL	9.81E-05	1.55E-04		ND	_	_	2.29E-04	3.62E-04	2.00E-02		1.14E-02	1.81E-02
SILVER	2.44E-04	3.30E-04		ND	- "	-	5.70E-04	7.70E-04	5.00E-03		1.14E-01	1.54E-01
ZINC	4.56E-02	4.67E-02		ND	-	-	1.06E-01	1.09E-01	2.00E-01		5.32E-01	5.45E-01
PESTICIDES												
ALDRIN	3.43E-07	3.43E-07 *	1.70E+01		5.83E-06	5.83E-06	8.00E-07	8.00E-07 *	3.00E-05		2.67E-02	2.67E-02
ALPHA-CHLORDANE	3.43E-07	3.43E-07 *	1.30E+00		4.46E-07	4.46E-07	8.00E-07	8.00E-07 *	6.00E-05		1.33E-02	1.33E-02
HEPTACHLOR	3.43E-07	3.43E07 °	4.50E+00		1.54E-06	1.54E-06	8.00E-07	8.00E-07 *	5.00E-04		1.60E-03	1.60E-03
HEPTACHLOR EPOXIDE	7.35E-07	1.13E-06	9.10E+00		6.69E-06	1.03E-05	1.71E-06	2.63E-06	1.30E-05		1.32E-01	2.02E-01
HEXACHLOROBENZENE	1.37E-06	1.37E-06 *	1.60E+00		2.19E-06	2.19E-06	3.20E~06	3.20E-06 *	8.00E-04		4.00E-03	4.00E-03
LINDANE (GAMMA-BHC)	3.43E-07	3.43E-07 *	1.30E+00		4.46E-07	4.46E-07	8.00E-07	8.00E-07 *	3.00E-04		2.67E-03	2.67E-03
MIREX	3.43E-07	3.43E-07 *	1.80E+00		6.17E-07	6.17E-07	8.00E-07	8.00E-07 *	2.00E-04		4.00E-03	4.00E-03
TRANS-NONACHLOR	3.43E-07	3.43E-07 *		ND	_	-	8.00E-07	8.00E-07 *		ND	_	_
o.p'-DDD	5.76E-07	8.08E-07		ND	_	_	1.34E-06	1.89E-06		ND	_	_
o,p'-DDE	3.43E-07	3.43E-07 *		ND	-	_	8.00E-07	8.00E-07 *		ND	_	
o,p'-DDT	3.43E-07	3.43E-07 *		ND	_	_	8.00E-07	8.00E-07 *		ND	_	_
p,p'DDD	3.43E-07	3.43E-07 *	2.40E-01		8.23E-08	8.23E-08	8.00E-07	8.00E-07 *	· · · · · · · · · · · · · · · · · · ·	ND		-
p,p'-DDE	2.74E-06	3.14E-06	3.40E-01		9.33E07	1.07E-06	6.40E-06	7.32E-06		ND	-	_
p,p'-DDT	3.43E-07	3.43E-07 *	3.40E-01		1.17E-07	1.17E-07	8.00E-07	8.00E-07 *	5.00E-04		1.60E-03	1.60E-03

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 5-8
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AROUND SEAVEY ISLAND FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	GENIC	RISKS		la de la j	NO	NCARCINOGE	NIC F	IISKS	
	CHRO	Y .	ORAL		CHEMICAL		CHROI DAILY				CHEMICAL SPECIFIC	
	INTAK (mg/kg/c	Table 1 to 1 t	FACTOR	i. Lini	SPECIFIC RISK		INTAK (mg/kg/c		RfD	ing in the second	HAZARD QUOTIENT	
ANALYTE	AVG	MAX	(mg/kg/day)-	-1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
BENZO(A)PYRENE	6.86E-06	9.31E-06	5.80E+00		3.98E-05	5.40E-05	1.60E-05	2.17E-05		ND	-	
FLUORANTHENE	1.31E-05	2.18E-05		ND		-	3.06E-05	5.09E-05	4.00E-02		7.64E-04	1.27E-03
PHENANTHRENE	4.65E-06	6.37E-06	1	ND	_	-	1.09E-05	1.49E-05	4.00E-03		2.71E-03	3.71E-03
PYRENE	9.55E-06	1.47E-05	1	ND	-		2.23E-05	3.43E-05	3.00E-02		7.43E-04	1.14E-03
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	4.10E-05	5.64E-05	7.70E+00		3.15E-04	4.34E-04	9.56E-05	1.32E-04		ND	_	_
					AVG	MAX		Par Bally	· · · · · · · · · · · · · · · · · · ·	1.50	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					1.63E-02		CUMULATIV HAZARD QU	E NONCARCIN OTIENT:	OGENIC		7.82E+01	1.03E+02

ND: NO DATA AVAILABLE

TABLE 5-9
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH
CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

		·	CARCING	GENI	C RISKS			NC	NCARCINOGE	ENIC F	RISKS	
	DAIL	CHRONIC DAILY INTAKE (mg/kg/day)			CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	r E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
INORGANICS												
ALUMINUM	2.38E-02	4.27E-02		ND	-	-	5.55E-02	9.96E-02	2.90E+00		1.92E-02	3.43E-02
ARSENIC	6.75E-03	6.81E-03	1.75E+00		1.18E-02	1.19E-02	1.58E-02	1.59E-02	3.00E-04		5.25E+01	5.30E+01
CADMIUM	1.14E-05	1.77E-05		ND	_	-	2.67E-05	4.14E-05	1.00E-03		2.67E-02	4.14E-02
CHROMIUM	4.41E-04	5.76E-04		ND	_	-	1.03E-03	1.34E-03	5.00E-03	T	2.06E-01	2.69E-01
COPPER	1.15E-02	1.35E-02		ND	-	-	2.69E-02	3.14E-02	3.70E-02	1	7.27E-01	8.50E-01
IRON	6.87E-02	1.28E-01		ND	-	-	1.60E-01	2.99E-01		ND	_	_
LEAD	1.46E-04	2.71E-04		ND	-	_	3.40E-04	6.31E-04		ND	-	_
MANGANESE	1.60E-03	1.77E-03		ND	_	-	3.73E-03	4.14E-03	1.00E-01		3.73E-02	4.14E-02
MERCURY	6.13E-04	8.14E-04		ND	_	-	1.43E-03	1.90E-03	3.00E-04		4.77E+00	6.33E+00
NICKEL	2.50E-04	4.03E-04		ND	-	-	5.83E-04	9.41E-04	2.00E-02		2.92E-02	4.71E-02
SILVER	3.95E-04	4.03E-04		ND	_	-	9.21E-04	9.41E-04	5.00E-03		1.84E-01	1.88E-01
ZINC	3.87E-02	4.27E-02		ND	•	-	9.02E-02	9.97E-02	2.00E-01		4.51E-01	4.98E-01
PESTICIDES												
ALDRIN	2.68E-07	3.59E-07	1.70E+01		4.56E-06	6.11E-06	6.26E-07	8.38E-07	3.00E-05		2.09E-02	2.79E-02
ALPHA-CHLORDANE	3.79E-07	5.35E-07	1.30E+00		4.93E-07	6.96E-07	8.84E-07	1.25E-06	6.00E-05		1.47E-02	2.08E-02
HEPTACHLOR	2.94E-07	3.59E-07	4.50E+00		1.32E-06	1.62E-06	6.86E-07	8.38E-07	5.00E-04		1.37E-03	1.68E-03
HEPTACHLOR EPOXIDE	2.85E-07	3.80E-07	9.10E+00		2.59E-06	3.46E-06	6.65E-07	8.86E-07	1.30E-05		5.11E-02	6.82E-02
HEXACHLOROBENZENE	1.12E-06	1.39E-06	1.60E+00		1.79E-06	2.22E-06	2.60E-06	3.23E-06	8.00E-04		3.26E-03	4.04E-03
LINDANE (GAMMA-BHC)	5.25E-07	1.06E-06	1.30E+00		6.82E-07	1.37E-06	1.22E-06	2.47E-06	3.00E-04		4.08E-03	8.23E-03
MIREX	2.94E-07	3.59E-07	1.80E+00		5.29E-07	6.47E-07	6.86E-07	8.38E-07	2.00E-04		3.43E-03	4.19E-03
TRANS-NONACHLOR	4.10E-07	5.96E-07		ND	-	_	9.57E-07	1.39E-06		ND	-	
o.p'-DDD	3.45E-07	3.59E-07		ND	_	-	8.04E-07	8.38E-07		ND		
o,p'-DDE	2.77E-07	3.59E-07		ND		_	6.47E-07	8.38E-07		ND	_	
o,p'-DDT	2.77E-07	3.59E-07		ND	-	-	6.47E-07	8.38E-07		ND		
p,p'-DDD	5.38E-07	7.89E-07	2.40E-01		1.29E-07	1.89E-07	1.26E-06	1.84E-06		ND	_	
p,p'-DDE	1.54E-06	1.97E-06	3.40E-01		5.23E-07	6.69E-07	3.59E-06	4.59E-06		ND		_
p,p'-DDT	2.19E-06	5.06E-08	3.40E-01		7.46E-07	1.72E-06	5.12E-06	1.18E-05	5.00E-04	-	1.02E-02	2.36E-02

TABLE 5-9
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH
CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	OGENI	C RISKS			NC	NCARCINOGI	NIC F	IISKS	
	DAIL INTAI	CHRONIC DAILY INTAKE (mg/kg/day)		ORAL SLOPE FACTOR			CHRONIC DAILY INTAKE (mg/kg/day)		RD		CHEMICA SPECIFIC HAZARD QUOTIEN	
POLYAROMATIC HYDROCARBONS		,										
ANTHRACENE	1.62E-05	3.62E-05	_	ND	_	-	3.78E-05	8.46E-05	3.00E-01		1.26E-04	2.82E-04
BENZO(A)ANTHRACENE	4.62E-05	8.62E-05	5.80E+00	1	2.68E-04	5.00E-04	1.08E-04	2.01E-04		ND	-	_
BENZO(A)PYRENE	5.45E-05	9.80E-05	5.80E+00		3.16E-04	5.68E-04	1.27E-04	2.29E-04		ND	_	_
BENZO(E)PYRENE	8.46E-05	1.37E-04		ND			1.97E-04	3.20E-04		ND	-	_
BENZO(G,H,I)PERYLENE	1.97E-05	3.14E-05		ND			4.60E-05	7.32E-05	4.00E-03		1.15E-02	1.83E-02
CHRYSENE	8.13E-05	1.27E-04	5.80E+00		4.72E-04	7.39E-04	1.90E-04	2.97E-04		ND	_	_
FLUORANTHENE	2.67E-04	4.70E-04		ND	-	_	6.22E-04	1.10E-03	4.00E-02		1.56E-02	2.74E-02
FLUORENE	2.43E-05	4.70E-05		ND	-	-	5.67E-05	1.10E-04	4.00E-02		1.42E-03	2.74E-03
INDENO(1,2,3-CD)PYRENE	1.82E-05	3.04E-05	5.80E+00		1.05E-04	1.76E-04	4.24E-05	7.09E-05		ND	_	_
PERYLENE	3.18E-05	4.90E-05		ND	_	-	7.42E-05	1.14E-04		ND	-	-
PHENANTHRENE	7.51E-05	1.27E-04		ND	-	_	1.75E-04	2.97E-04	4.00E-03		4.38E-02	7.43E-02
PYRENE	2.43E-04	4.80E-04		ND	-	_	5.68E-04	1.12E-03	3.00E-02		1.89E-02	3.73E-02
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	3.24E-05	4.25E-05	7.70E+00		2.50E-04	3.27E-04	7.57E-05	9.91E-05	_	ND	_	-
					AVG	MAX	Y		10 g (14 g		AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					1.32E-02	1.42E-02	CUMULATIV HAZARD QU		NOGENIC		5.92E+01	6.16E+01

TABLE 5-10
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT YORK HARBOR SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

		That I is	CARCINO	GENK	RISKS	19		NO	NCARCINOGEN	IIC RISKS	
	DAIL	CHRONIC DAILY INTAKE (mg/kg/day)			CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	r E	RfD	CHEMICA SPECIFI HAZARI QUOTIE	C)
ANALYTE	AVG	MAX	(mg/kg/day)	-1	AVG	MAX	AVG	MAX	(mg/kg/day)	AVG	MAX
PESTICIDES									1		
ALDRIN	1.94E-07	1.94E-07 *	1.70E+01		3.29E-06	3.29E-06	4.52E-07	4.52E-07 *	3.00E-05	1.51E-02	1.51E-02
ALPHA-CHLORDANE	5.95E-07	5.95E-07 °	1.30E+00		7.73E-07	7.73E-07	1.39E-06	1.39E-06 "	6.00E-05	2.31E-02	2.31E-02
HEPTACHLOR	3.41E-07	3.41E-07 °	4.50E+00		1.53E-06	1.53E-06	7.95E-07	7.95E-07 *	5.00E-04	1.59E-03	1.59E-03
HEPTACHLOR EPOXIDE	5.55E-07	5.55E-07 °	9.10E+00		5.05E-06	5.05E-06	1.30E-06	1.30E-06 *	1.30E-05	9.96E-02	9.96E-02
HEXACHLOROBENZENE	3.31E-07	3.31E-07 *	1.60E+00		5.30E-07	5.30E-07	7.73E-07	7.73E-07 *	8.00E-04	9.66E-04	9.66E04
LINDANE (GAMMA-BHC)	1.75E-07	1.75E-07 *	1.30E+00		2.27E-07	2.27E-07	4.08E-07	4.08E-07 *	3.00E-04	1.36E-03	1.36E-03
MIREX	3.41E-07	3.41E-07 *	1.80E+00		6.13E-07	6.13E-07	7.95E-07	7.95E-07 *	2.00E-04	3.97E-03	3.97E-03
TRANS-NONACHLOR	3.06E-07	3.06E-07 *	•	ND	-	-	7.13E-07	7.13E-07 *	N	1D -	_
o,p'-DDD	3.41E-07	3.41E-07 *		ND	-	_	7.95E-07	7.95E-07 *	N	1D -	_
o,p'-DDE	3.41E-07	3.41E-07 *		ND		-	7.95E-07	7.95E-07 °		1D -	-
o,p'-DDT	3.41E-07	3.41E-07 *	·T	ND	-	_	7.95E-07	7.95E-07 *	1	1D -	-
p,p'-DDD	9.19E-07	9.19E-07 *	2.40E-01		2.21E-07	2.21E-07	2.14E-06	2.14E-06 *	N	1D -	-
p,p'-DDE	1.89E-06	1.89E-06 *	3.40E-01		6.42E-07	6.42E-07	4.41E-06	4.41E-06 *	N	1D -	-
p,p'-DDT	4.43E-07	4.43E-07	3.40E-01		1.51E-07	1.51E-07	1.03E-06	1.03E-06 *	5.00E-04	2.07E-03	2.07E-03
POLYCHLORINATED BIPHENYLS (PCBs)		,									
TOTAL PCBs (AROCHLOR)	3.01E-05	3.01E-05 *	7.70E+00		2.32E-04	2.32E-04	7.02E-05	7.02E-05 •		- 0	_
					AVG	MAX				AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					2.45E-04 *	2.45E-04	l .	CUMULATIVE NONCARCINOGENIC IAZARD QUOTIENT: 1.48E-0			

ND: NO DATA AVAILABLE

TABLE 5-11
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

		a de la composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición dela composición de la composición dela composición de la composición dela c	CARCING	GEN	C RISKS			NC	NCARCINOGE	ENIC F	RISKS	
	DAIL' INTAI	CHRONIC DAILY INTAKE (mg/kg/day)		ORAL SLOPE FACTOR			CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	2.14E-03	5.65E-03		ND	-	-	5.00E-03	1.32E-02	2.90E+00	-	1.72E-03	4.54E-03
ARSENIC	9.71E-04	1.92E-03	1.75E+00		1.70E-03	3.37E-03	2.27E-03	4.49E-03	3.00E-04		7.55E+00	1.50E+01 -
CADMIUM	1.43E-04	3.02E-04		ND	-	-	3.33E-04	7.04E-04	1.00E-03		3.33E-01	7.04E-01
CHROMIUM	5.68E-05	8.37E-05		ND	-	_	1.33E-04	1.95E-04	5.00E-03		2.65E-02	3.90E-02
COPPER	3.87E-03	6.43E-03		ND	-	_	9.03E-03	1.50E-02	3.70E-02		2.44E-01	4.05E-01
IRON	5.67E-03	1.73E-02		ND	_	-	1.32E-02	4.03E-02		ND	-	
LEAD	1.41E-05	3.89E-05		ND	-	-	3.30E-05	9.08E-05		ND	-	-
MANGANESE	2.84E-04	4.12E-04		ND	-	-]	6.62E-04	9.61E-04	1.00E-01		6.62E-03	9.61E-03
MERCURY	8.02E-05	1.04E-04		ND	_	_	1.87E-04	2.42E-04	3.00E-04		6.24E-01	8.08E-01
NICKEL	4.86E-05	1.06E-04		ND	-	_	1.13E-04	2.48E-04	2.00E-02		5.67E-03	1.24E-02
SILVER	5.94E-05	1.04E-04		ND	-	-	1.39E-04	2.43E-04	5.00E-03		2.77E-02	4.86E-02
ZINC	5.78E-03	7.68E-03		ND	_		1.35E-02	1.79E-02	2.00E-01		6.75E-02	8.95E-02
PESTICIDES												
ALDRIN	8.07E-08	2.33E-07	1.70E+01		1.37E-06	3.97E-06	1.88E-07	5.45E-07	3.00E-05		6.27E-03	1.82E-02
ALPHA-CHLORDANE	1.70E-07	3.98E-07	1.30E+00		2.21E-07	5.18E-07	3.96E-07	9.29E-07	6.00E-05		6.61E-03	1.55E-02
HEPTACHLOR	5.31E-08	7.65E-08	4.50E+00		2.39E-07	3.44E-07	1.24E-07	1.79E-07	5.00E-04		2.48E-04	3.57E-04
HEPTACHLOR EPOXIDE	7.24E-08	2.05E-07	9.10E+00		6.59E-07	1.86E-06	1.69E-07	4.77E-07	1.30E-05		1.30E-02	3.67E-02
HEXACHLOROBENZENE	5.46E-07	1.37E-06	1.60E+00		8.74E-07	2.20E-06	1.27E-06	3.21E-06	8.00E-04		1.59E-03	4.01E-03
LINDANE (GAMMA-BHC)	1.47E-07	6.94E-07	1.30E+00		1.91E-07	9.02E-07	3.42E-07	1.62E-06	3.00E-04		1.14E-03	5.40E-03
MIREX	5.82E-08	7.82E-08	1.80E+00		1.05E-07	1.41E-07	1.36E-07	1.83E-07	2.00E-04		6.79E-04	9.13E-04
TRANS-NONACHLOR	6.89E-07	1.25E-06		ND	<u>.</u>	_	1.61E-06	2.92E-06		ND		_
o,p'-DDD	6.58E-08	1.17E-07	<u> </u>	ND	· -	-	1.54E-07	2.73E-07		ND	-	-
o,p'-DDE	1.30E-07	2.59E-07		ND	-		3.04E-07	6.05E-07		ND	-	_
o,p'-DDT	1.08E-07	2.38E-07		ND	-	-	2.53E-07	5.55E-07		ND	_	
p,p'-DDD	7.03E-07	1.21E-06	2.40E-01		1.69E-07	2.90E-07	1.64E-06	2.82E-06		ND	_	-
p.p'-DDE	6.82E-06	1.25E-05	3.40E-01		2.32E-06	4.24E-06	1.59E-05	2.91E-05		ND	_	_
p.p'-DDT	3,15E-07	8.50E-07	3,40E-01		1.07E-07	2.89E-07	7.36E-07	1.98E-06	5.00E-04		1.47E-03	3.97E-03

TABLE 5-11
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	41, 42	3 1 1 2 Y	CARCING	GENI	C RISKS			NO	NCARCINOGE	NIC F	IISKS	
	CHRONIC DAILY INTAKE (mg/kg/d/ay)		ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	T. N. 18 11 11 11 11 11 11 11 11 11 11 11 11	CHRON DAILY INTAK (mg/kg/d	(1) E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIENT	
ANALYTE	AVG	MAX	(mg/kg/day)-	1 :	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	5.01E-06	2.48E-05	1	ND	-		1.17E-05	5.80E-05	3.00E-01		3.90E-05	1.93E-04
BENZO(A)ANTHRACENE	1.27E-05	5.04E-05	5.80E+00		7.36E-05	2.92E-04	2.96E-05	1.18E-04		ND	-	-
BENZO(A)PYRENE	1.41E-05	5.23E-05	5.80E+00		8.20E-05	3.03E-04	3.30E-05	1.22E-04		ND	_	_
BENZO(E)PYRENE	1.75E-05	5.90E-05		ND	-	-	4.08E-05	1.38E-04		ND	-	-
BENZO(G,H,I)PERYLENE	4.87E-06	1.42E-05	· · · · - · ·	ND	-	-	1.14E-05	3.30E-05	4.00E-03		2.84E-03	8.26E-03
CHRYSENE	2.13E-05	8.70E-05	5.80E+00		1.23E-04	5.05E-04	4.97E-05	2.03E-04		ND	-	-
FLUORANTHENE	6.53E-05	2.64E-04		ND	-		1.52E-04	6.17E-04	4.00E-02		3.81E-03	1.54E-02
FLUORENE	4.50E-06	2.02E-05		ND	-	-	1.05E-05	4.72E-05	4.00E-02		2.62E-04	1.18E-03
INDENO(1,2,3-CD)PYRENE	4.61E-06	1.39E-05	5.80E+00		2.67E-05	8.06E-05	1.08E-05	3.24E-05		ND	-	_
PERYLENE	7.69E-06	1.83E-05		ND	-	-	1.79E05	4.27E-05		ND	-	_
PHENANTHRENE	4.14E-05	1.01E-04		ND	_	_	9.65E-05	2.35E-04	4.00E-03		2.41E-02	5.88E-02
PYRENE	5.46E-05	2.16E-04		ND		-	1.28E-04	5.03E-04	3.00E-02		4.25E-03	1.68E-02
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	3.89E-05	8.19E-05	7.70E+00		2.99E-04	6.31E-04	9.07E-05	1.91E-04		ND	<u> </u>	-
			•		AVG	MAX		A. T.			AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					2.31E-03	į.	CUMULATIVE HAZARD QUE		NOGENIC		8.96E+00	1.73E+01

TABLE 5-12
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS)
CAUGHT AT YORK HARBOR SAMPLE LOCATIONS
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	OGEN	IC RISKS			NC	NCARCINOG	ENIC F	RISKS	
	CHRO	NIC	f .			'	CHROI	VIC		- 4.	CHEMICA	L ,
	DAIL	7 .	ORAL		CHEMICAL	L	DAILY				SPECIFIC	fur a line
	INTAK	E	SLOPE		SPECIFIC		INTAK	E			HAZARD	
	(mg/kg/	day)	FACTOR		RISK		(mg/kg/d	lay)	RfD		QUOTIEN	T .
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
PESTICIDES												
ALDRIN	3.99E-08	3.99E-08	1.70E+01		6.79E-07	6.79E-07	9.32E-08	9.32E-08	3.00E-05	I	3.11E-03	3.11E-03
ALPHA-CHLORDANE	7.36E-08	8.96E-08	1.30E+00		9.57E-08	1.16E-07	1.72E-07	2.09E-07	6.00E-05		2.86E-03	3.48E-03
HEPTACHLOR	4.22E-08	5.79E-08	4.50E+00		1.90E-07	2.60E-07	9.84E-08	1.35E-07	5.00E-04		1.97E-04	2.70E-04
HEPTACHLOR EPOXIDE	6.87E-08	8.47E-08	9.10E+00		6.26E-07	7.71E-07	1.60E-07	1.98E-07	1.30E-05		1.23E-02	1.52E-02
HEXACHLOROBENZENE	4.10E-08	5.52E-07	1.60E+00		6.56E-08	8.83E-07	9.57E-08	1.29E-06	8.00E-04		1.20E-04	1.61E-03
LINDANE (GAMMA-BHC)	2.17E-08	4.21E-08	1.30E+00		2.82E-08	5.48E-08	5.05E-08	9.83E-08	3.00E-04		1.68E-04	3.28E-04
MIREX	4.22E-08	5.81E-08	1.80E+00		7.59E-08	1.05E-07	9.84E-08	1.36E-07	2.00E-04		4.92E-04	6.78E-04
TRANS-NONACHLOR	3.78E-08	7.12E-07		ND	_	-	8.83E-08	1.66E-06		ND	-	_
o,p'-DDE	4.22E-08	1.79E-07		ND	_		9.84E-08	4.19E-07		ND	-	-
p,p'-DDD	1.14E-07	2.13E-07	2.40E-01		2.73E-08	5.12E-08	2.66E-07	4.98E-07		ND	-	_
p,p'-DDE	2.34E-07	7.92E-06	3.40E-01		7.95E-08	2.69E-06	5.46E-07	1.85E-05		ND	-	-
p,p'-DDT	5.49E-08	7.08E-08	3.40E-01		1.87E-08	2.41E-08	1.28E-07	1.65E-07	5.00E-04		2.56E-04	3.31E-04
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	3.73E-06	2.91E-05	7.70E+00		2.87E-05	2.24E-04	8.69E-06	6.79E-05	,	ND	-	-
			100		AVG	MAX				1	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					3.06E-05	2.30E-04	CUMULATIV HAZARD QU		INOGENIC		1.95E-02	2.50E-02

TABLE 5-13
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

that is a second of the second		Anna an	CARCING	OGEN	IC RISKS	Whateles its		NC	NCARCINOGI	ENIC F	NSKS	aki ya ay
	CHRONIC DAILY INTAKE (mg/kg/day)		ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRONIC DAILY INTAKE (mg/kg/day)		RnD		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1.	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	5.24E-03	1.38E-02		ND		-	1.22E-02	3.22E-02	2.90E+00		4.21E-03	1.11E-02
ARSENIC	2.37E-03	4.70E-03	1.75E+00		4.15E-03	8.23E-03	5.54E-03	1.10E-02	3.00E-04	<u> </u>	1.85E+01	3.66E+01
CADMIUM	3.49E-04	7.37E-04		ND		-	8.15E-04	1.72E-03	1.00E-03		8.15E-01	1.72E+00
CHROMIUM	1.39E-04	2.05E-04		ND	-	-	3.24E-04	4.77E-04	5.00E-03		6.48E-02	9.54E-02
COPPER	9.45E-03	1.57E-02		ND	_	-	2.21E-02	3.67E-02	3.70E-02		5.96E-01	9.91E-01
IRON	1.38E-02	4.22E-02		ND	-	-	3.23E-02	9.86E-02		ND	i –	-
LEAD	3.46E-05	9.51E-05		ND	_	-	8.06E-05	2.22E-04		ND		_
MANGANESE	6.93E-04	1.01E-03		ND	-		1.62E-03	2.35E-03	1.00E-01		1.62E-02	2.35E-02
MERCURY	1.96E-04	2.54E-04		ND	-	_	4.58E-04	5.93E-04	3.00E-04		1.53E+00	1.98E+00
NICKEL	1.19E-04	2.60E-04		ND	-	_	2.77E-04	6.06E-04	2.00E-02		1.39E-02	3.03E-02
SILVER	1.45E-04	2.55E-04		ND	_	-	3.39E-04	5.94E-04	5.00E-03		6.78E-02	1.19E-01
ZINC	1.41E-02	1.88E-02		ND	-	-	3.30E-02	4.38E-02	2.00E-01	1	1.65E-01	2.19E01
PESTICIDES												
ALDRIN	1.97E-07	5.71E-07	1.70E+01		3.35E-06	9.70E-06	4.60E-07	1.33E-06	3.00E-05		1.53E-02	4.44E-02
ALPHA-CHLORDANE	4.15E-07	9.73E-07	1.30E+00		5.40E-07	1.27E-06	9.69E-07	2.27E-06	6.00E-05		1.61E-02	3.79E-02
HEPTACHLOR	1.30E-07	1.87E-07	4.50E+00		5.85E-07	8.42E-07	3.03E-07	4.36E-07	5.00E-04		6.06E-04	8.73E-04
HEPTACHLOR EPOXIDE	1.77E-07	5.00E-07	9.10E+00		1.61E-06	4.55E-06	4.13E-07	1.17E-06	1.30E-05		3.18E-02	8.97E-02
HEXACHLOROBENZENE	1.34E-06	3.36E-06	1.60E+01		2.14E-05	5.38E-05	3.12E-06	7.84E-06	8.00E-04		3.90E-03	9.80E-03
LINDANE (GAMMA-BHC)	3.58E-07	1.70E-06	1.30E+00		4.66E-07	2.21E-08	8.36E-07	3.96E-06	3.00E-04		2.79E-03	1.32E-02
MIREX	1.42E-07	1.91E-07	1.80E+00		2.56E-07	3.44E-07	3.32E-07	4.46E-07	2.00E-04		1.66E-03	2.23E-03
TRANS-NONACHLOR	1.68E-06	3.06E-06		ND			3.93E-06	7.14E-06		ND	_	
o,p'DDD	1.61E-07	2.86E-07		ND			3.75E-07	6.68E-07		ND	<u>-</u>	
o,p'-DDE	3.18E-07	6.34E-07		ND	-	-	7.42E-07	1.48E-06		ND	_	_
o,p'-DDT	2.65E-07	5.82E-07		ND		-	6.18E-07	1.36E-06		ND		
p.p'-DDD	1.72E-06	2.96E-06	2.40E-01		4.13E-07	7.09E-07	4.01E-06	6.90E-06		ND	_	_
p,p'-DDE	1.67E-05	3.05E-05	3.40E-01		5.67E-06	1.04E-05	3.89E-05	7.12E-05		ND	_	-
p,p'-DDT	7.71E-07	2.08E-06	3.40E-01		2.62E-07	7.06E-07	1.80E-06	4.85E-06	5.00E-04		3.60E-03	9.70E-03

TABLE 5-13
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

		John M. H.	CARCING	GEN	C RISKS	antali K		NC	NCARCINOGE	ENIC P	CHEMICAL SPECIFIC HAZARD QUOTIENT AVG M M M M M M M M M							
	CHRO DAIL INTAI (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	Tradition of the contract of	CHROI DAILY INTAK	E	R/D		SPECIFIC HAZARD							
ANALYTE	AVG	MAX	(mg/kg/day)-		AVG	MAX	(mg/kg/c	MAX	(mg/kg/day)			MAX						
POLYAROMATIC HYDROCARBONS	Rude -		(97.187.1877/	n years								
ANTHRACENE	1.23E-05	6.07E-05	1	ND	_	_	2.86E-05	1.42E-04	3.00E-01		9.53E-05	4.72E-04						
BENZO(A)ANTHRACENE	3.10E-05	1.23E-04	5.80E+00		1.80E-04	7.15E-04	7.24E-05	2.88E-04		ND		_						
BENZO(A)PYRENE	3.46E-05	1.28E-04	5.80E+00		2.00E-04	7.41E-04	8.06E05	2.98E-04		ND	_							
BENZO(E)PYRENE	4.27E-05	1.44E-04		ND	-	-	9.97E-05	3.36E-04		ND	-	_						
BENZO(G,H,I)PERYLENE	1.19E-05	3.46E-05		ND	-	-	2.78E-05	8.08E-05	4.00E-03		6.95E-03	2.02E-02						
CHRYSENE	5.20E-05	2.13E-04	5.80E+00		3.02E-04	1.23E-03	1.21E-04	4.96E-04		ND		-						
FLUORANTHENE	1.60E-04	6.46E-04		ND	-	_	3.72E-04	1.51E-03	4.00E-02		9.31E-03	3.77E-02						
FLUORENE	1.10E-05	4.94E-05		ND		-	2.57E-05	1.15E-04	4.00E-02		6.41E-04	2.88E-03						
INDENO(1,2,3-CD)PYRENE	1.13E-05	3.40E-05	5.80E+00		6.54E-05	1.97E-04	2.63E-05	7.93E-05		ND	_	-						
PERYLENE	1.88E-05	4.47E-05		ND	_	-	4.39E-05	1.04E-04		ND	_	-						
PHENANTHRENE	1.01E-04	2.46E-04		ND	-	_	2.38E-04	5.74E-04	4.00E-03		5.90E-02	1.44E-01						
PYRENE	1.34E-04	5.27E-04		ND	-	_	3.12E-04	1.23E-03	3.00E-02		1.04E-02	4.10E-02						
POLYCHLORINATED BIPHENYLS (PCBs)																		
TOTAL PCBs (AROCHLOR)	9.50E-05	2.00E-04	7.70E+00		7.31E-04	1.54E-03	2.22E-04	4.67E04		ND	-	-						
					AVG	MAX					AVG	MAX						
CUMULATIVE CARCINOGENIC RISK:	UMULATIVE CARCINOGENIC RISK:					1.27E-02	CUMULATIVE NONCARCINOGENIC E-02 HAZARD QUOTIENT:				2.19E+01	4.22E+01						

TABLE 5-14
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF WHOLE LOBSTER (TAIL FLESH AND HEPATOPANCREAS WEIGHTED AVERAGE)
CAUGHT AT YORK HARBOR SAMPLE LOCATIONS FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

		egent of	CARCINO	GENIC	RISKS	Y 4.1. 1.1. 1		NOI	NCARCINOGI	ENIC R	IISKS	
	CHRONIC DAILY INTAKE (mg/kg/day)		ORAL SLOPE FACTOR		CHEMICAI SPECIFIC RISK		CHRON DAILY INTAK (mg/kg/d	1			CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	-1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
PESTICIDES												
ALDRIN	2.94E-07	2.94E-07 *	1.70E+01		5.00E-08	5.00E-06	6.86E-07	6.86E-07 *	3.00E-05		2.29E-02	2.29E-02
ALPHA-CHLORDANE	5.42E-07	6.59E-07	1.30E+00		7.04E-07	8.57E-07	1.26E-06	1.54E-06	6.00E-05		2.11E-02	2.56E-02
HEPTACHLOR	3.10E-07	4.26E-07	4.50E+00		1.40E-06	1.92E-06	7.24E-07	9.93E-07	5.00E-04		1.45E-03	1.99E-03
HEPTACHLOR EPOXIDE	5.06E-07	6.23E-07	9.10E+00		4.60E-06	5.67E-06	1.18E-06	1.45E-06	1.30E-05		9.08E-02	1.12E-01
HEXACHLOROBENZENE	3.02E-07	4.06E-06	1.60E+00		4.83E-07	6.50E-06	7.04E-07	9.47E-06	8.00E-04		8.80E-04	1.18E-02
LINDANE (GAMMA-BHC)	1.59E-07	3.10E-07	1.30E+00		2.07E-07	4.03E-07	3.72E-07	7.23E-07	3.00E-04		1.24E-03	2.41E-03
MIREX	3.10E-07	4.28E-07	1.80E+00		5.58E-07	7.70E-07	7.24E-07	9.98E-07	2.00E-04		3.62E-03	4.99E-03
TRANS-NONACHLOR	2.78E-07	5.24E-06		ND	-	-	6.50E-07	1.22E-05		ND	_	-
o,p'-DDE	3.10E-07	1.32E-06		ND	-	-	7.24E-07	3.08E-06		ND	-	_
p.p'-DDD	8.37E-07	1.57E-06	2.40E-01		2.01E-07	3.77E-07	1.95E-06	3.66E-06		ND	_	_
p,p'DDE	1.72E-06	5.83E-05	3.40E-01		5.85E-07	1.98E-05	4.02E-06	1.36E-04	_	ND	_	_
p,p'-DDT	4.04E-07	5.21E-07	3.40E-01		1.37E-07	1.77E-07	9.42E-07	1.22E-06	5.00E-04		1.88E-03	2.43E-03
POLYCHLORINATED BIPHENYLS (PCBs)			•		•	•		· ·				
TOTAL PCBs (AROCHLOR)	2.74E-05	2.14E-04	7.70E+00		2.11E-04	1.65E-03	6.40E-05	5.00E-04		ND	-	-
					AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:			CUMULATIVE CARCINOGENIC RISK:					CUMULATIVE NONCARCINOGENIC -03 HAZARD QUOTIENT:				1.84E-01

ND : NO DATA AVAILABLE

TABLE 5-15
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NO	NCARCINOGE	ENIC F	NISKS	
	CHRO DAIL' INTAK (mg/kg/	Y · KE	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/k	r E	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-1	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS									, , , , , , , , , , , , , , , , , , , ,	-		
ALUMINUM	9.50E-03	1.87E-02		ND	_	-	2.22E-02	4.36E-02	2.90E+00	i	7.64E-03	1.50E-02
ARSENIC	2.74E-04	6.97E-04	1.75E+00		4.80E-04	1.22E-03	6.40E-04	1.63E-03	3.00E-04	-	2.13E+00	5.42E+00
CADMIUM	6.54E-05	1.09E-04		ND	-	_	1.53E-04	2.54E-04	1.00E-03		1.53E-01	2.54E-01
CHROMIUM	1.27E-04	1.91E-04		ND	_	-	2.97E-04	4.47E-04	5.00E-03		5.95E-02	8.94E-02
COPPER	2.64E-04	1.00E-03		ND	_	-	6.16E-04	2.34E-03	3.70E-02		1.67E-02	6.33E-02
IRON	2.07E-02	4.08E-02		ND	-	-	4.82E-02	9.52E-02		ND	-	-
LEAD	3.27E-04	9.89E-04		ND	-	- 1	7.63E-04	2.31E-03		ND	-	-
MANGANESE	5.50E-04	2.58E-03		ND	-	_ '	1.28E-03	6.02E-03	1.00E-01		1.28E-02	6.02E-02
MERCURY	1.47E-05	3.47E-05		ND	-	-	3.44E-05	8.11E-05	3.00E-04		1.15E-01	2.70E-01
NICKEL	6.65E-05	1.48E-04		ND	-	_	1.55E-04	3.46E-04	2.00E-02		7.76E-03	1.73E-02
SILVER	1.36€-05	1.29E-04		ND	-	-	3.18E-05	3.02E-04	5.00E-03		6.37E-03	6.03E-02
ZINC	3.97E-03	7.95E-03		ND	-	_	9.26E-03	1.86E-02	2.00E-01		4.63E-02	9.28E-02
PESTICIDES												
ALDRIN	8.72E-08	1.20E-06	1.70E+01		1.48E-06	2.03E-05	2.03E-07	2.79E-06	3.00E-05		6.78E-03	9.30E-02
ALPHA-CHLORDANE	1.25E-07	8.30E-07	1.30E+00		1.63E-07	1.08E-06	2.92E-07	1.94E-06	6.00E-05		4.87E-03	3.23E-02
HEPTACHLOR	2.06E-08	6.66E-09	4.50E+00		9.27E-08	3.00E-08	4.81E-08	1.55E-08	5.00E-04		9.62E-05	3.11E-05
HEPTACHLOR EPOXIDE	1.14E-08	8.02E-08	9.10E+00		1.04E-07	7.30E-07	2.66E-08	1.87E-07	1.30E-05		2.05E-03	1.44E-02
HEXACHLOROBENZENE	7.10E-08	1.74E-06	1.60E+00		1.14E-07	2.78E-06	1.66E-07	4.06E-06	8.00E-04		2.07E-04	5.07E-03
LINDANE (GAMMA-BHC)	5.45E-08	1.31E-06	1.30E+00		7.09E-08	1.71E-06	1.27E-07	3.06E-06	3.00E-04		4.24E-04	1.02E-02
MIREX	2.63E-08	4.72E-08	1.80E+00		4.74E~08	8.50E-08	6.14E-08	1.10E-07	2.00E-04		3.07E04	5.51E-04
TRANS-NONACHLOR	1.21E-07	8.40E-07		ND	_	_	2.83E-07	1.96E-06		ND	•	-
o,p'-DDD	7.80E-08	6.21E-07		ND	-	-	1.82E-07	1.45E-06		ND	_	-
o,p'-DDE	2.92E-08	5.45E-08	···········	ND	_	-	6.81E-08	1.27E-07		ND	_	_
o,p'-DDT	9.95E-08	1.10E-06		ND	-	-	2.32E-07	2.57E-06		ND		_
p,p'-DOD	4.76E-07	3.03E-06	2.40E-01		1.14E-07	7.26E-07	1.11E-06	7.08E-08		ND	_	
p.p'-DDE	4.66E-07	3.29E-06	3.40E-01		1.58E-07	1.12E-06	1.09E-06	7.68E-06		ND	-	_
p,p'-DDT	4.38E-07	3.05E-06	3.40E-01		1.49E-07	1.04E-06	1.02E-06	7.12E-06	5.00E-04		2.04E-03	1.42E-02

TABLE 5-15
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS	:		NC	NCARCINOGE	NIC F	IISKS	
	CHRONIC DAILY INTAKE (mg/kg/day)		ORAL SLOPE FACTOR		CHEMICAL SPECIFIC FIISK		CHRONIC DAILY INTAKE (mg/kg/day)		RID		CHEMICAI SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)	ı	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS		,							, , , , , ,			
ANTHRACENE	3.63E-07	2.06E-06		ND	_	-	8.48E-07	4.80E-06	3.00E-01		2.83E-06	1.60E-05
BENZO(A)ANTHRACENE	6.55E-07	2.35E-06	5.80E+00		3.80E-06	1.36E-05	1.53E-06	5.48E-06		ND	-	-
BENZO(A)PYRENE	4.25E-07	1.45E-06	5.80E+00		2.47E-06	8.38E-06	9.92E-07	3.37E-06		ND		-
BENZO(E)PYRENE	1.49E-06	4.18E-06		ND	-	-	3.48E-06	9.76E-06		ND	_	_
CHRYSENE	1.33E-06	3.01E-06	5.80E+00		7.73E-06	1.74E-05	3.11E-06	7.01E-06		ND	1	_
FLUORANTHENE	3.16E-06	8.56E-06		ND	-	-	7.37E-06	2.00E-05	4.00E-02		1.84E-04	4.99E-04
PERYLENE	6.12E-07	1.33E-06		ND	-	-	1.43E-06	3.11E-06		ND	-	_
PHENANTHRENE	1.12E-06	4.18E-06		ND	_	-	2.61E-06	9.76E-06	4.00E-03		6.53E-04	2.44E-03
PYRENE	3.01E-06	7.61E-06		ND	_	_	7.02E-06	1.78E-05	3.00E-02		2.34E-04	5.92E-04
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	6.83E-06	1.90E-05	7.70E+00		5.26E-05	1.47E-04	1.59E-05	4.44E-05				
					AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					5.49E-04	1.44E-03	CUMULATIV		NOGENIC		2.58E+00	6.52E+00

TABLE 5-16
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS	iyr		NO	NCARCINOGE	ENIC P	ISKS	
i de la proposició de la proposició de la composició de la composició de la composició de la composició de la c	CHRO DAIL INTAI (mg/kg/	Y (E	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	1.09E-02	1.70E-02		ND	_	-	2.54E-02	3.97E-02	2.90E+00		8.75E-03	1.37E-02
ARSENIC	3.01E-04	4.06E-04	1.75E+00		5.26E-04	7.10E-04	7.01E-04	9.47E-04	3.00E-04		2.34E+00	3.16E+00
CADMIUM	5.28E-05	6.42E-05		ND	-	-	1.23E-04	1.50E-04	1.00E-03		1.23E-01	1.50E-01
CHROMIUM	1.35E-04	1.59E-04		ND	-		3.14E-04	3.72E-04	5.00E-03		6.28E-02	7.44E-02
COPPER	2.15E-04	2.48E-04		ND	-	-	5.03E-04	5.79E-04	3.70E-02		1.36E-02	1.57E-02
IRON	2.17E-02	3.24E-02		ND	-	-	5.05E-02	7.56E-02		ND	_	-
LEAD	2.61E-04	4.28E-04		ИD	-	-	6.09E-04	9.99E-04		ND		-
MANGANESE	4.03E-04	5.18E-04		ND		-	9.41E-04	1.21E-03	1.00E-01		9.41E-03	1.21E-02
MERCURY	1.94E-05	2.74E-05		ВD	-	-	4.52E-05	6.39E-05	3.00E-04		1.51E-01	2.13E-01
NICKEL	6.17E-05	9.27E-05		ND	-	_	1.44E-04	2.16E-04	2.00E-02		7.20E-03	1.08E-02
SILVER	5.14E-06	6.78E-06		ND	-	-	1.20E-05	1.58E-05	5.00E-03		2.40E-03	3.17E-03
ZINC	3.88E-03	5.99E-03		ND	-	-	9.06E-03	1.40E-02	2.00E-01		4.53E-02	6.99E-02
PESTICIDES												
ALDRIN	2.70E-07	1.20E-06	1.70E+01		4.59E-06	2.03E-05	6.30E-07	2.79E-06	3.00E-05		2.10E-02	9.30E-02
ALPHA-CHLORDANE	2.47E-07	8.30E-07	1.30E+00		3.21E-07	1.08E-06	5.76E-07	1.94E-06	6.00E-05		9.59E-03	3.23E-02
HEXACHLOROBENZENE	3.59E-07	1.74E-06	1.60E+00		5.74E-07	2.78E-06	8.37E-07	4.06E-06	8.00E-04		1.05E-03	5.07E-03
TRANS-NONACHLOR	2.49E-07	8.40E-07		ND	-	-	5.80E-07	1.96E-06		ND	_	_
o,p'-DDD	1.42E-07	6.21E-07		ND	-	-	3.32E-07	1.45E-06		ND		
p,p'-DDD	8.04E-07	3.03E-06	2.40E-01		1.93E-07	7.26E-07	1.88E-06	7.06E-06		ND	-	_
p,p'-DDE	8.76E-07	3.29E-06	3.40E-01		2.98E-07	1.12E-06	2.04E-06	7.68E-06		ND	_	
p,p'-DDT	7.24E-07	3.05E-06	3.40E-01		2.46E-07	1.04E-06	1.69E-06	7.12E-06	5.00E-04		3.38E-03	1.42E-02

TABLE 5-16
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS	J. 1. 1		NO	NCARCINOGE	NIC F	IISKS	
ing a manganan na manganan Na manganan na	CHRO						CHROI	36.55			CHEMICAL	
	DAIL' INTAK		ORAL SLOPE	٠.	CHEMICAI SPECIFIC	T 11 11 11 11 11 11 11 11 11 11 11 11 11	DAILY	Add to the time of			SPECIFIC HAZARD	
	(mg/kg/c	tay)	FACTOR		RISK		(mg/kg/d	Jay)	RID		QUOTIEN	r
ANALYTE	AVG	MAX	(mg/kg/day)-	J.	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
BENZ(A)ANTHRACENE	1.07E-06	2.35E-06	5.80E+00		6.21E-06	1.36E-05	2.50E-06	5.48E-06		ND	-	_
BENZO(A)PYRENE	7.52E-07	1.45E-06	5.80E+00		4.36E-06	8.38E-06	1.76E-06	3.37E-06		ND	-	-
BENZO(E)PYRENE	1.56E-06	2.43E-06		ND	-	-	3.63E-06	5.67E-06		ND	_	
CHRYSENE	1.51E-06	3.01E-06	5.80E+00		8.77E-06	1.74E-05	3.53E-06	7.01E-08		ND	_	-
FLUORANTHENE	3.44E-06	7.01E-06		ND	-	-	8.02E-06	1.63E-05	4.00E-02		2.00E-04	4.09E-04
PERYLENE	6.00E-07	1.28E-06		ND	-	-	1.40E-06	2.98E-06		ND	_	
PHENANTHRENE	1.54E-06	4.18E-06		ND	-	_	3.60E06	9.76E-06	4.00E-03		8.99E-04	2.44E-03
PYRENE	3.40E-06	6.59E-06		ND	_	-	7.92E-06	1.54E-05	3.00E-02		2.64E-04	5.13E-04
POLYCHLORINATED BIPHENYLS (PCBs)						•		,				
TOTAL PCBs (AROCHLOR)	5.48E-06	7.39E-06	7.70E+00		4.22E-05	5.69E-05	1.28E-05	1.72E-05		ND	-	-
					AVG	MAX		· ·			AVG	MAX
							CUMULATIV	E NONCARCI	NOGENIC			
CUMULATIVE CARCINOGENIC RISK:					5.94E-04	8.34E-04	HAZARD QU	OTIENT:			2.80E+00	' 3.87E+00

TABLE 5-17
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AROUND SEAVEY ISLAND
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NC	NCARCINOGE	NIC F	NISKS	Aller State
	CHRO DAIL' INTAK (mg/kg/	Y (E	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/d	, E	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	8.94E-03	1.87E-02		ND	-	_	2.09E-02	4.36E-02	2.90E+00		7.19E-03	1.50E-02
ARSENIC	2.29E-04	4.28E-04	1.75E+00		4.01E-04	7.49E-04	5.34E-04	9.99E-04	3.00E-04		1.78E+00	3.33E+00
CADMIUM	6.79E-05	1.09E-04		ND	_	_	1.58E-04	2.54E-04	1.00E-03		1.58E-01	2.54E-01
CHROMIUM	1.17E-04	1.55E-04		ND	_	-	2.73E-04	3.61E-04	5.00E-03		5.46E-02	7.23E-02
COPPER	2.75E-04	1.00E-03		ND	_	_	6.42E-04	2.34E-03	3.70E-02		1.74E-02	6.33E-02
IRON	2.01E-02	4.08E-02		ND	-	-	4.69E-02	9.52E-02		ND	-	
LEAD	3.23E-04	9.89E-04		ND	-	-	7.55E-04	2.31E-03		ND	-	_
MANGANESE	5.48E-04	2.58E-03		ND	-	-	1.28E-03	6.02E-03	1.00E-01		1.28E-02	6.02E-02
MERCURY	1.47E-05	3.47E-05		ND	_	_	3.43E-05	8.11E-05	3.00E-04		1.14E-01	2.70E-01
NICKEL	6.12E-05	1.11E-04		ND	_	-	1.43E-04	2.60E-04	2.00E-02		7.14E-03	1.30E-02
SILVER	7.67E-06	9.21E-05		ND	_	_	1.79E-05	2.15E-04	5.00E-03		3.58E-03	4.30E-02
ZINC	3.80E-03	7.95E-03		ND	-	_	8.87E-03	1.86E-02	2.00E-01		4.43E-02	9.28E-02
PESTICIDES												
ALDRIN	5.45E-08	1.43E-07	1.70E+01		9.27E-07	2.43E-06	1.27E-07	3.33E-07	3.00E-05		4.24E-03	1.11E-02
ALPHA-CHLORDANE	8.08E-08	2.58E-07	1.30E+00		1.05E-07	3.35E-07	1.89E-07	6.02E-07	6.00E-05		3.14E-03	1.00E-02
HEPTACHLOR EPOXIDE	1.05E-08	8.02E-08	9.10E+00		9.52E-08	7.30E-07	2.44E-08	1.87E-07	1.30E-05		1.88E-03	1.44E-02
LINDANE (GAMMA-BHC)	7.55E-08	1.31E-06	1.30E+00		9.81E-08	1.71E-06	1.76E-07	3.06E-06	3.00E-04		5.87E-04	1.02E-02
TRANS-NONACHLOR	7.96E-08	1.74E-07		ND	-	_	1.86E-07	4.07E-07		ND	_	1
o.p'-DDD	4.22E-08	2.58E-07		NĐ	-	-	9.84E-08	6.03E-07		ND	-	-
o,p'-DDE	2.69E-08	5.45E-08		ND	_	_	6.29E-08	1.27E-07		ND		_
o,p'-DDT	1.24E-07	1.10E-06		ND	-	-	2.89E-07	2.57E-06	•	ND	_	-
p,p'-DDD	2.73E-07	7.21E-07	2.40E-01		6.55E-08	1.73E-07	6.37E-07	1.68E-06		ND	_	-
p,p'-DDE	3.38E-07	6.45E-07	3.40E-01		1.15E-07	2.19E-07	7.89E-07	1.50E-06		ND	-	-
p,p'-DDT	4.23E-07	2.25E-06	3.40E-01		1.44E-07	7.64E-07	9.87E-07	5.25E-06	5.00E-04		1.97E-03	1.05E-02

TABLE 5-17
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AROUND SEAVEY ISLAND RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

The state of the s			CARCING	GEN	C RISKS	a alije	1 4.	NC	NCARCINOGE	NIC P	IISKS	
	CHRO DAIL' INTAK (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1.33	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS		:										
ANTHRACENE	5.49E-07	2.06E-06		ND	_	_	1.28E-06	4.80E-06	3.00E-01		4.27E-06	1.60E-05
BENZO(E)PYRENE	1.13E-06	2.43E-06		ND	_		2.63E-06	5.66E-06		ND	-	_
CHRYSENE	1.18E-06	2.30E-06	5.80E+00		6.86E-06	1.33E-05	2.76E-06	5.37E-06		ND	_	
FLUORANTHENE	2.81E-06	4.42E-06		ND	-		6.55E-06	1.03E-05	4.00E-02		1.64E-04	2.58E-04
PERYLENE	6.01E-07	1.33E-06		ND	-	_	1.40E-06	3.11E-06	·	ND	-	_
PHENANTHRENE	1.11E-06	1.79E-06		ND	-	_	2.58E-06	4.17E-06	4.00E-03		6.46E-04	1.04E-03
PYRENE	2.55E-06	4.21E-06		ND	-	-	5.96E-06	9.82E-06	3.00E-02		1.99E-04	3.27E-04
POLYCHLORINATED BIPHENYLS (PCBs)		1	_									
TOTAL PCBs (AROCHLOR)	6.22E-06	1.54E-05	7.70E+00		4.79E-05	1.18E-04	1.45E-05	3.59E-05		ND	-	-
					AVG	MAX	1.3			1,500	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	IMULATIVE CARCINOGENIC RISK:						CUMULATIV HAZARD QU		NOGENIC		2.21E+00	4.27E+00

TABLE 5-18
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GEN	C RISKS	erika Perikan		NC	NCARCINOGI	ENIC F	RISKS	F. N. W. 18
	CHRO DAIL INTAI (mg/kg/	Y KE	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRO DAILY INTAK (mg/kg/c	(E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS						:			, ,			
ALUMINUM	9.67E-03	1.49E-02		ND	-		2.26E-02	3.48E-02	2.90E+00		7.78E-03	1.20E-02
ARSENIC	3.59E-04	6.97E-04	1.75E+00		6.29E-04	1.22E-03	8.39E-04	1.63E-03	3.00E-04		2.80E+00	5.42E+00
CADMIUM	7.33E-05	9.21E-05		ND	_		1.71E-04	2.15E-04	1.00E-03		1.71E-01	2.15E-01
CHROMIUM	1.43E-04	1.91E-04		ND		-	3.34E-04	4.47E-04	5.00E-03		6.68E-02	8.94E-02
COPPER	2.77E-04	4.02E-04		ND	-		6.47E-04	9.38E-04	3.70E-02	1	1.75E-02	2.54E-02
IRON	2.09E-02	3.06E-02		ND	-	-	4.87E-02	7.14E-02	<u></u>	ND	-	
LEAD	3:59E-04	5.89E-04		ND	_	-	8.38E-04	1.37E-03		ND		
MANGANESE	6.11E-04	1.80E-03		ND	_	_	1.43E-03	4.21E-03	1.00E-01		1.43E-02	4.21E-02
MERCURY	1.19E-05	1.84E-05		ND	_	_	2.78E-05	4.30E-05	3.00E-04	1	9.26E-02	1.43E-01
NICKEL	7.92E-05	1.48E-04		ND	-	-	1.85E-04	3.46E-04	2.00E-02		9.24E-03	1.73E-02
SILVER	3.25E-05	1.29E-04		ND	-	-	7.59E-05	3.02E-04	5.00E-03		1.52E-02	6.03E-02
ZINC	4.40E-03	5.86E-03		ND	_	_	1.03E-02	1.37E-02	2.00E-01		5.13E-02	6.84E-02
PESTICIDES		1										
ALDRIN	5.64E-08	1.14E-07	1.70E+01		9.59E-07	1.95E-06	1.32E-07	2.67E-07	3.00E-05		4.39E-03	8.90E-03
ALPHA-CHLORDANE	1.70E-07	3.66E-07	1.30E+00		2.21E-07	4.75E-07	3.97E-07	8.53E-07	6.00E-05		6.62E-03	1.42E-02
HEPTACHLOR	1.84E-08	6.34E-09	4.50E+00		8.27E-08	2.85E-08	4.29E-08	1,48E-08	5.00E-04		8.58E-05	2.96E-05
HEPTACHLOR EPOXIDE	9.83E-09	1.90E-09	9.10E+00		8.94E-08	1.73E-08	2.29E-08	4.44E-09	1.30E-05		1.76E-03	3.41E-04
HEXACHLOROBENZENE	3.04E-08	1.05E-08	1.60E+00		4.87E-08	1.67E-08	7.10E-08	2.44E-08	8.00E-04		8.88E-05	3.05E-05
LINDANE (GAMMA-BHC)	1.78E-08	4.88E-08	1.30E+00		2.31E-08	6.35E-08	4.14E-08	1.14E-07	3.00E-04		1.38E-04	3.80E-04
MIREX	2.19E-08	4.69E-08	1.80E+00		3.94E-08	8.45E-08	5.10E-08	1.09E-07	2.00E-04	-	2.55E-04	5.47E-04
TRANS-NONACHLOR	1.52E-07	3.82E-07		ND		_	3.56E-07	8.91E-07		ND		
o,p'-DDD	1.28E-07	4.33E-07		ND	_	_	3.00E-07	1.01E-06	· · · · ·	ND		
o.p'-DDE	2.35E-08	2.69E-08		ND	-		5.47E-08	6.29E-08		ND		_
o,p'-DDT	7.45E-08	1.94E-07		ND			1.74E-07	4.53E-07		ND		
p,p'-DDD	8.13E-07	2.23E-06	2.40E-01		1.95E-07	5.36E-07	1.90E-06	5.21E-06		ND		
p,p'-DDE	5.49E-07	1.45E-06	3.40E-01		1.87E-07	4.93E-07	1.28E-06	3.38E-06		ND	<u>-</u>-	
p,p'-DDT	3.22E-07	7.27E-07	3.40E-01						5.00E_04	110		2 205 02
p,p -UU1	3.22E-07	7.27E-07	3.40E-01		1.10E-07	2.47E-07	7.52E-07	1.70E-06	5.00E-04		1.50E-03	3.39E-

TABLE 5-18
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO	NCARCINOGE	NIC F	IISKS	
	CHRO DAIL INTAK (mg/kg/	Y. (E.	ORAL SLOPE FACTOR	V s	CHEMICAL SPECIFIC RISK		CHRO DAILY INTAK (mg/kg/k	r Œ	RfD		CHEMICAL SPECIFIC HAZARD QUOTIENT	i Suite e
ANALYTE	AVG	MAX	(mg/kg/day)-1	Ė.	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
BENZ(A)ANTHRACENE	6.97E-07	1.91E-06	5.80E+00		4.04E-06	1.11E-05	1.63E-06	4.45E-06		ND	_	
BENZO(E)PYRENE	2.03E-06	4.18E-06		ND	-	-	4.75E-06	9.76E-06		ND	-	
CHRYSENE	1.46E-06	2.85E-06	5.80E+00		8.49E-06	1.65E-05	3.42E-06	6.66E-06		ND	_	
FLUORANTHENE	3.55E-06	8.56E-06		ND	-	_	8.29E-06	2.00E-05	4.00E-02		2.07E-04	4.99E-04
PERYLENE	6.46E-07	1.24E-06		ND	-	-	1.51E-06	2.90E-06		ND		
PHENANTHRENE	8.73E-07	1.66E-06		ND	-	_	2.04E-06	3.88E-06	4.00E-03		5.09E-04	9.71E-04
PYRENE	3.51E-06	7.61E-06		ND	-		8.19E-06	1.78E-05	3.00E-02		2.73E-04	5.92E-04
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	9.01E-06	1.90E-05	7.70E+00		6.94E-05	1.46E-04	2.10E-05	4.44E-05		ND	-	_
					AVG	MAX	I				AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	UMULATIVE CARCINOGENIC RISK:						CUMULATIV HAZARD QU	E NONCARCI OTIENT:	NOGENIC		3.26E+00	6.13E+00

TABLE 5-19
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT YORK HARBOR SAMPLE LOCATIONS
RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NC	NCARCINOGI	ENIC F	RISKS	
	CHRO DAIL' INTAK (mg/kg/c	KE	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	•	CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICA SPECIFIC HAZARD QUOTIEN	;
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	7.90E-03	1.08E-02		ND	_	-	1.84E-02	2.52E-02	2.90E+00		6.36E-03	8.68E-03
ARSENIC	1.75E-04	3.08E-04	1.75E+00	Ì .	3.06E-04	5.38E-04	4.08E-04	7.18E-04	3.00E-04	1	1.36E+00	2.39E+00
CADMIUM	6.07E05	6.84E-05	<u> </u>	ND	-	-	1.42E-04	1.59E-04	1.00E-03		1.42E-01	1.59E-01
CHROMIUM	8.35E-05	1.07E-04		ND	+	_	1.95E-04	2.51E-04	5.00E-03		3.90E-02	5.01E-02
COPPER	2.73E-04	3.03E-04		ND	_	-	6.36E-04	7.06E-04	3.70E-02		1.72E-02	1.91E-02
IRON	1.61E-02	1.97E-02		ND	_	-	3.76E-02	4.59E-02		ND	_	_
LEAD	8.32E-05	1.22E-04		ND	-	-	1.94E-04	2.85E-04		ND	_	_
MANGANESE	3.77E-04	4.60E-04		ND	_	-	8.80E-04	1.07E-03	1.00E-01		8.80E-03	1.07E-02
MERCURY	1.34E-05	2.15E-05		ND		-	3.13E-05	5.02E-05	3.00E-04		1.04E-01	1.67E-01
NICKEL	4.91E-05	6.35E-05		ND	-	_	1.15E-04	1.48E-04	2.00E-02		5.73E-03	7.40E-03
SILVER	4.22E-06	5.74E-06		ND	_	_	9.86E-06	1.34E-05	5.00E~03		1.97E-03	2.68E-03
ZINC	3.61E-03	4.11E-03		ND	-	_	8.42E-03	9.59E-03	2.00E-01		4.21E-02	4.79E-02
PESTICIDES												
ALDRIN	2.75E-08	6.28E-08	1.70E+01		4.68E-07	1.07E-08	6.42E-08	1.46E-07	3.00E-05		2.14E-03	4.88E-03
ALPHA-CHLORDANE	1.22E-07	3.20E-07	1.30E+00		1.59E-07	4.17E-07	2.85E-07	7.48E-07	6.00E-05		4.75E-03	1.25E-02
HEPTACHLOR	7.29E-08	2.43E~07	4.50E+00		3.28E-07	1.09E-06	1.70E-07	5.66E-07	5.00E-04		3.40E-04	1.13E-03
TRANS-NONACHLOR	1.82E-07	3.70E-07		ND	-	_	4.24E-07	8.63E-07		ND	_	-
o,p'-DDD	9.70E-08	1.68E-07		ND	_	-	2.26E-07	3.92E-07		ND	_	_
o,p'-DDT	3.25E-08	7.45E-08		ND	-	-	7.58E-08	1.74E-07		ND	-	-
p,p'-DDD	2.48E-07	3.16E-07	2.40E-01		5.96E-08	7.59E-08	5.79E-07	7.38E-07		ND	_	_
p,p'-DDE	2.31E-07	2.84E-07	3.40E-01		7.85E08	9.64E-08	5.39E-07	8.62E-07		ND	_	_
p,p'-DDT	3.50E-07	9.37E-07	3.40E-01		1.19E-07	3.19E-07	8.17E-07	2.19E-06	5.00E-04		1.63E-03	4.37E-03
POLYAROMATIC HYDROCARBONS												
FLUORANTHENE	1.59E-06	2.24E-06		ND	_	-	3.70E-06	5.22E-06	4.00E-02		9.26E-05	1.30E-04
PHENANTHRENE	1.09E-06	2.04E-06		ND	_	-	2.55E-06	4.77E-06	4.00E-03		6.38E-04	1.19E-03
PYRENE	1.02E-06	1.81E-06		ND	_	-	2.37E-06	4.22E-06	3.00E-02		7.90E-05	1.41E-04
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	4.33E-06	5.27E-06	7.70E+00		3.34E-05	4.06E-05	1.01E-05	1.23E-05		ND		-
		· .			AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	MULATIVE CARCINOGENIC RISK:						CUMULATIVI HAZARD QU		NOGENIC		1.74E+00	2.89E+00

TABLE 5-20
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT THE GREAT BAY ESTUARY SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GEN	IC RISKS		11.0	NC	ONCARCINOGENIC	RISKS	
	CHRO DAIL INTAI (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAI SPECIFIC RISK		CHRO DAILY INTAK (mg/kg/c	NIC / E	RfD	CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)	AVG	MAX
INORGANICS											
ALUMINUM	1.40E-02	2.10E-02		ND		_	3.26E-02	4.90E-02	2.90E+00	1.12E-02	1.69E-02
ARSENIC	3.47E-04	5.64E-04	1.75E+00		6.07E-04	9.88E-04	8.09E-04	1.32E-03	3.00E-04	2.70E+00	4.39E+00
CADMIUM	8.75E-05	1.34E-04		ND	_	-	2.04E-04	3.12E-04	1.00E-03	2.04E-01	3.12E-01
СНЯОМІИМ	1.95E-04	2.67E-04		ND	_	_	4.55E-04	6.23E-04	5.00E-03	9.10E-02	1.25E-01
COPPER	3.10E-04	3.56E-04		ND	_	-	7.24E-04	8.30E-04	3.70E-02	1.96E-02	2.24E-02
IRON	2.82E-02	3.87E-02		ND	_	_	6.58E-02	9.02E-02	ND	_	
LEAD	1.67E-04	2.10E-04		ND	_	-	3.90E-04	4.89E-04	ND	_	
MANGANESE	1.82E-03	3.57E-03		ND	-	_	4.24E-03	8.34E-03	1.00E-01	4.24E-02	8.34E-02
MERCURY	1.27E-05	1.81E-05		ND	_	-	2.97E-05	4.22E-05	3.00E-04	9.91E-02	1.41E-01
NICKEL	8.57E-05	9.76E-05	·	ND	_	_	2.00E-04	2.28E-04	2.00E-02	1.00E-02	1.14E-02
SILVER	6.54E-05	8.70E-05		ND	-	_	1.53E-04	2.03E-04	5.00E-03	3.05E-02	4.06E-02
ZINC	4.69E-03	5.94E-03		ND		_	1.09E-02	1.39E-02	2.00E-01	5.47E-02	6.93E-02
PESTICIDES										0.472 02	0.002-02
ALDRIN	8.34E-08	9.35E-08	1.70E+01	j	1.42E-06	1.59E-06	1.95E-07	2.18E-07	3.00E-05	6.48E-03	7.27E-03
ALPHA-CHLORDANE	2.28E-07	3.07E-07	1.30E+00		2.97E-07	3.99E-07	5.33E-07	7.17E-07	6.00E-05	8.88E-03	1.19E-02
LINDANE (GAMMA-BHC)	4.18E-08	1.62E-07	1.30E+00		5.44E-08	2.11E-07	9.76E-08	3.78E-07	3.00E-04	3.25E-04	1.26E-03
TRANS-NONACHLOR	1.87E-07	2.75E-07		ND	_	_	4.36E-07	6.42E-07	ND	-	1.202-03
o,p'-DDD	8.56E-08	1.57E-07		ND		 	2.00E-07	3.67E-07	ND	_	
o,p'-DDT	2.85E-08	7.74E-08		ND	-		6.66E-08	1.80E-07	ND		
p.p'-DDD	5.22E-07	7.90E-07	2.40E-01		1.25E-07	1.90E-07	1.22E-06	1.84E-06	ND		
p,p'-DDE	7.62E-07	1.42E-06	3.40E-01		2.59E-07	4.84E-07	1.78E-06	3.32E-06	ND		<u>-</u>
p.p'-DDT	2.00E-07	5.10E-07	3.40E-01		6.81E-08	1.73E-07	4.68E-07	1.19E-06	5.00E-04	9.35E-04	2.38E-03

TABLE 5-20
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT THE GREAT BAY ESTUARY SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GEN	C RISKS			NC	NCARCINOGENIC	RISKS	
	CHRO DAIL' INTAI (mg/kg/	r Œ	ORAL SLOPE FACTOR		CHEMICAI SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	NIC / E	RID	CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)	l:.	AVG	MAX	AVG	MAX	(mg/kg/day)	AVG	MAX
POLYAROMATIC HYDROCARBONS									, ,		
BENZO(A)ANTHRACENE	1.88E-06	3.80E-06	5.80E+00		1.09E-05	2.21E-05	4.38E-06	8.88E-06	ND		_
BENZO(A)PYRENE	2.20E-06	3.80E-06	5.80E+00		1.27E-05	2.21E-05	5.13E-06	8.88E-06	ND	_	_
BENZO(E)PYRENE	4.77E-06	8.88E-06		ND	_		1.11E-05	2.07E-05	ND		
CHRYSENE	2.90E-06	5.07E-06	5.80E+00		1.68E-05	2.94E-05	6.76E-06	1.18E-05	ND	-	
FLUORANTHENE	3.70E-06	5.71E-06		ND	-		8.64E-06	1.33E-05	4.00E-02	2.16E-04	3.33E-04
PERYLENE	2.29E-06	3.49E-06		ND	-	-	5.35E-06	8.14E-06	ND		-
PHENANTHRENE	5.02E-07	1.33E-06		ND	-	_	1.17E-06	3.09E-06	4.00E-03	2.93E-04	7.73E-04
PYRENE	5.57E-06	1.11E-05		ND	-	_	1.30E-05	2.59E-05	3.00E-02	4.33E-04	8.63E-04
POLYCHLORINATED BIPHENYLS (PCBs)											
TOTAL PCBs (AROCHLOR)	2.86E-06	1.15E-05	7.70E+00		2.20E-05	8.86E-05	6.66E-06	2.68E-05	ND	-	_
			i i i i i i i i i i i i i i i i i i i		AVG	MAX	120	el egye		AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					6.72E04	1.15E-03	CUMULATIVI HAZARD QU		NOGENIC	3.28E+00	5.23E+00

TABLE 5-21
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	ENIC F	RISKS			N	ONCARCINOGE	NIC F	IISKS	
ANALYTE	CHRONK DAILY INTAKE (mg/kg/da) AVG		ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRONI DAILY INTAKE (mg/kg/da	y)	RID		CHEMICAL SPECIFIC HAZARD QUOTIENT	
INORGANICS	STREET, AND ALL STREET	MAX	(mg/kg/day)-1		AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
ALUMINUM	2.32E-02	4.57E-02		ND			5 405 00	4 475 44	2.225.22			
ARSENIC	6.70E-04	1.70E-03	1.75E+00	NU	1.17E-03	-	5.42E-02	1.07E-01	2.90E+00		1.87E-02	3.68E-02
CADMIUM	1.60E-04	2.66E-04	1./5E+00	ND		2.98E-03	1.56E-03	3.98E-03	3.00E-04		5.21E+00	1.33E+01
CHROMIUM			-		_		3.73E-04	8.21E04	1.00E-03	 	3.73E-01	6.21E-01
	3.12E-04	4.68E-04	*	ND	-		7.27E-04	1.09E-03	5.00E-03	 	1.45E-01	2.18E-01
COPPER	6.46E-04	2.45E-03		ND			1.51E-03	5.72E-03	3.70E-02		4.07E-02	1.55E-01
IRON	5.05E-02	9.97E-02		ND	<u>-</u>		1.18E-01	2.33E-01		ND	-	
LEAD	7.99E-04	2.42E-03		ND		-	1.87E-03	5.64E-03		ND	-	
MANGANESE	1.34E-03	6.31E-03		ND	-	_	3.14E-03	1.47E-02	1.00E-01	<u> </u>	3.14E-02	1.47E-01
MERCURY	3.60E-05	8.49E-05		ND	-	-	8.41E-05	1.98E-04	3.00E-04		2.80E-01	6.61E-01
NICKEL	1.63E-04	3.63E-04	-	ND		-	3.79E-04	8.46E-04	2.00E-02		1.90E-02	4.23E-02
SILVER	3.34E-05	3.16E-04		ND		-	7.78E-05	7.37E-04	5.00E-03		1.56E-02	1.47E-01
ZINC	9.70E-03	1.94E-02		ND	-	-	2.26E-02	4.54E-02	2.00E-01		1.13E-01	2.27E-01
PESTICIDES												
ALDRIN	2.13E-07	2.92E-06	1.70E+01		3.62E-06	4.97E-05	4.97E-07	6.82E-06	3.00E-05		1.66E-02	2.27E-01
ALPHA-CHLORDANE	3.06E-07	2.03E-06	1.30E+00		3.98E-07	2.64E-06	7.14E-07	4.74E-06	6.00E-05	"	1.19E-02	7.89E-02
HEPTACHLOR	5.04E-08	1.63E-08	4.50E+00		2.27E-07	7.32E-08	1.18E-07	3.80E-08	5.00E-04		2.35E-04	7.59E-05
HEPTACHLOR EPOXIDE	2.79E-08	1.96E-07	9.10E+00		2.54E-07	1.78E-08	6.51E-08	4.57E-07	1.30E-05		5.01E-03	3.52E-02
HEXACHLOROBENZENE	1.74E-07	4.25E-06	1.60E+00		2.78E-07	6.80E-06	4.05E-07	9.92E-06	8.00E-04		5.06E-04	1.24E-02
LINDANE (GAMMA-BHC)	1.33E-07	3.21E-06	1.30E+00		1.73E-07	4.17E-06	3.11E-07	7.49E-06	3.00E-04		1.04E-03	2.50E-02
MIREX	6.43E-08	1.15E-07	1.80E+00		1.16E-07	2.08E-07	1.50E-07	2.69E-07	2.00E-04	1	7.50E-04	1.35E-03
TRANS-NONACHLOR	2.97E-07	2.05E-06		ND	_	_	6.93E-07	4.79E-06	<u>=</u> :: : _	ND		
o,p'-DDD	1.91E-07	1.52E-06		ND	_		4.45E-07	3,54E-06		ND		
o,p'-DDE	7.13E-08	1.33E-07		ND	_	_	1.66E-07	3.11E-07		ND	_	
o,p'-DDT	2.43E-07	2.69E-06		ND		_	5.68E-07	6.28E-06		ND		
p,p'-DDD	1.16E-06	7.40E-06	2.40E-01		2.80E-07	1.78E-06	2.72E-06	1.73E-05		ND	_	
p,p'-DDE	1.14E-06	8.05E-06	3.40E-01	-	3.87E-07	2.74E-06	2.66E-06	1.88E-05		ND		_ _
p,p'-DDT	1.07E-06	7.46E-06	3.40E-01	\dashv	3.64E-07	2.54E-06	2.50E-08	1.74E-05	5.00E-04	170	4 005 02	2 405 00
,h _00 t	1.07 = -00	7.40E-00	3.40E-01		3.04E-07	2.04E-08	2.50E-06	1.74E-05	5.UUE-04	1	4.99E-03	3.48E-02

TABLE 5-21
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	Tider on biland		CARCINO	ENIC	RISKS	47-1904		N	ONCARCINOGE	NIC R	SKS	
	CHRONI DAILY INTAKE (mg/kg/da		ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRONIC DAILY INTAKE (mg/kg/day		RinD		CHEMICAL SPECIFIC HAZARD QUOTIENT	
ANALYTE	AVG	MAX	(mg/kg/day)-1		AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	8.88E-07	5.03E-06	-	ND	-	-	2.07E-06	1.17E-05	3.00E-01		6.91E-06	3.91E-05
BENZO(A)ANTHRACENE	1.60E-06	5.74E-06	5.80E+00		9.28E-06	3.33E-05	3.73E-06	1.34E-05		ND	-	
BENZO(A)PYRENE	1.04E-06	3.53E-08	5.80E+00		6.03E-06	2.05E-05	2.42E-06	8.25E-06		ND	-	
BENZO(E)PYRENE	3.64E-06	1.02E-05		ND	-	-	8.49E-06	2.39E-05		ND	-	
CHRYSENE	3.26E-06	7.35E-06	5.80E+00		1.89E-05	4.26E-05	7.60E-06	1.71E-05		ND		
FLUORANTHENE	7.72E-06	2.09E-05		ND	-	_	1.80E-05	4.88E-05	4.00E-02		4.50E-04	1.22E-03
PERYLENE	1.49E-06	3.25E-06		ND	_	-	3.49E-06	7.59E-06		ND	-	
PHENANTHRENE	2.73E-06	1.02E-05		ND	-	-	6.38E-06	2.39E-05	4.00E-03		1.60E-03	5.97E-03
PYRENE	7.36E-06	1.86E-05		ND	_	-	1.72E-05	4.34E-05	3.00E-02		5.72E-04	1.45E-03
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	1.67E-05	4.65E-05	7.70E+00		1.28E-04	3.58E-04	3.89E-05	1.09E-04		ND	- 1	_
			y yangina	111	AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					1.34E-03	3.51E-03	CUMULATIVE N HAZARD QUOT		GENIC		6.30E+00	1.59E+01

TABLE 5-22
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NC.	NCARCINOGE	NIC F	IISKS	
	CHRO DAIL INTAK (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	•	CHROI DAILY INTAK (mg/kg/c	E	AfD		CHEMICA SPECIFIC HAZARD QUOTIEN	74 . 4.44 m m
ANALYTE	AVG	MAX	(mg/kg/day)-	1 .	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	8.00E-02	1.25E-01		ND	-	_	1.87E-01	2.92E-01	2.90E+00	i	6.44E-02	1.01E-01
ARSENIC	2.21E-03	2.99E-03	1.75E+00		3.87E-03	5.23E-03	5.16E-03	6.97E-03	3.00E-04		1.72E+01	2.32E+01
CADMIUM	3.89E-04	4.72E-04		ND	-	-	9.07E-04	1.10E-03	1.00E-03		9.07E-01	1.10E+00
СНЯОМІИМ	9.91E-04	1.17E-03		ND	-	_	2.31E-03	2.74E-03	5.00E-03		4.62E-01	5.48E-01
COPPER	1.59E-03	1.83E-03		ND	-	-	3.70E-03	4.26E-03	3.70E-02		1.00E-01	1.15E-01
IRON	1.59E-01	2.39E-01		ND	-	-	3.72E-01	5.57E-01		ND	-	_
LEAD	1.92E-03	3.15E-03		ND		-	4.48E-03	7.35E-03		ND	-	-
MANGANESE	2.97E-03	3.81E-03		ND	-	-	6.93E-03	8.89E-03	1.00E-01		6.93E-02	8.89E-02
MERCURY	1.42E-04	2.02E-04		ND	_		3.32E-04	4.70E-04	3.00E-04		1.11E+00	1.57E+00
NICKEL	4.54E-04	6.82E-04		ND	-	-	1.06E-03	1.59E-03	2.00E-02		5.30E-02	7.96E-02
SILVER	3.78E-05	4.99E-05		ND	-	- 1	8.83E-05	1.16E-04	5.00E-03		1.77E-02	2.33E-02
ZINC	2.86E-02	4.41E-02		ND	-	- 1	6.67E-02	1.03E-01	2.00E-01		3.33E-01	5.14E-01
PESTICIDES												
ALDRIN	1.99E-06	8.80E-06	1.70E+01		3.37E-05	1.50E-04	4.63E-06	2.05E-05	3.00E-05		1.54E-01	6.84E-01
ALPHA-CHLORDANE	1.81E-06	6.11E-06	1.30E+00		2.36E-06	7.94E-06	4.23E-06	1.43E-05	6.00E-05		7.06E-02	2.38E-01
HEXACHLOROBENZENE	2.64E-06	1.28E-05	1.60E+00		4.22E-06	2.05E-05	6.16E-06	2.98E-05	8.00E-04		7.69E-03	3.73E-02
TRANS-NONACHLOR	1.83E-06	6.18E-06		ND	-		4.27E-06	1.44E-05		ND	_	-
o,p'-DDD	1.05E-06	4.57E-06		ND	-		2.44E-06	1.07E-05		ND	_	
p,p'-DDD	5.91E-06	2.23E-05	2.40E-01		1.42E-06	5.34E-06	1.38E-05	5.19E-05		ND	_	_
p,p*-DDE	6.45E-06	2.42E-05	3.40E-01		2.19E-06	8.24E-06	1.50E-05	5.65E-05		ND		_
p,p'-DDT	5.33E-06	2.25E-05	3.40E-01		1.81E-06	7.64E-06	1.24E-05	5.24E-05	5.00E-04		2.49E-02	1.05E-01

TABLE 5-22
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS		7.7 S. S. S. S. S. S. S.	NC	NCARCINOGE	NIC F	IISKS	
	CHRO DAIL' INTAK (mg/kg/c	Y KE	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS		1										
BENZO(A)ANTHRACENE	7.88E-06	1.73E-05	5.80E+00		4.57E-05	1.00E-04	1.84E-05	4.03E-05	1	ND	-	-
BENZO(A)PYRENE	5.54E-06	1.06E-05	5.80E+00		3.21E-05	6.17E-05	1.29E-05	2.48E-05		ND	_	_
BENZO(E)PYRENE	1.14E-05	1.79E-05		ND	-	1	2.67E-05	4.17E-05		ND	_	
CHRYSENE	1.11E-05	2.21E-05	5.80E+00		6.46E-05	1.28E-04	2.60E-05	5.16E-05		ND	-	
FLUORANTHENE	2.53E-05	5.16E-05		ND	•	_	5.90E-05	1.20E-04	4.00E-02		1.48E-03	3.01E-03
PERYLENE	4.41E-06	9.40E-06		ND	-	1	1.03E-05	2.19E-05		ND	-	-
PHENANTHRENE	1.13E-05	3.08E-05		ND	-	-	2.65E-05	7.18E-05	4.00E-03		6.62E-03	1.80E-02
PYRENE	2.50E-05	4.85E-05		ND		-	5.83E-05	1.13E-04	3.00E-02		1.94E-03	3.77E-03
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	4.04E-05	5.44E-05	7.70E+00		3.11E04	4.19E-04	9.42E-05	1.27E-04		ND	-	_
		+ 1			AVG	MAX				1371	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					4.37E-03		CUMULATIV HAZARD QU		NOGENIC		2.06E+01	2.85E+01

TABLE 5-23
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AROUND SEAVEY ISLAND FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NC	NCARCINOGE	NIC F	RISKS	
ANALYTE	CHRO DAIL' INTAK (mg/kg/	Y (E day)	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	14.19	CHROI DAILY INTAK (mg/kg/c	, E lay)	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	<u>.</u>
	AVG	MAX	(mg/kg/day)-		AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	6.58E-02	1.38E-01		ND	-	-	1.53E-01	3.21E-01	2.90E+00		5.29E-02	1.11E-01
ARSENIC	1.68E-03	3.15E-03	1.75E+00	L	2.95E-03	5.51E-03	3.93E-03	7.35E-03	3.00E-04		1.31E+01	2.45E+01
CADMIUM	4.99E-04	8.01E-04		ND			1.17E-03	1.87E-03	1.00E-03		1.17E+00	1.87E+00
CHROMIUM	8.62E-04	1.14E-03		ND	-		2.01E-03	2.66E-03	5.00E-03		4.02E-01	5.32E-01
COPPER	2.02E-03	7.38E-03		ND	-	_ [4.72E-03	1.72E-02	3.70E-02		1.28E-01	4.66E-01
IRON	1.48E-01	3.00E-01		ND	_	-	3.45E-01	7.00E-01		ND	-	_
LEAD	2.38E-03	7.28E-03		ND	-	-	5.55E-03	1.70E-02		ND	-	_
MANGANESE	4.03E-03	1.90E-02		ND	_	_	9.41E-03	4.43E-02	1.00E-01		9.41E-02	4.43E-01
MERCURY	1.08E-04	2.56E-04		ND	-	-	2.52E-04	5.97E-04	3.00E-04		8.41E-01	1.99E+00
NICKEL	4.50E-04	8.19E-04		ND	_	_	1.05E-03	1.91E-03	2.00E-02		5.25E-02	9.55E-02
SILVER	5.64E-05	6.77E-04		ND	-	_	1.32E-04	1.58E-03	5.00E-03		2.63E-02	3.16E-01
ZINC	2.80E-02	5.85E-02		ND	-	-	6.52E-02	1.37E-01	2.00E-01		3.26E-01	6.83E-01
PESTICIDES												
ALDRIN	4.01E-07	1.05E-06	1.70E+01		6.82E-06	1.78E-05	9.36E-07	2.45E-06	3.00E-05		3.12E-02	8.16E-02
ALPHA-CHLORDANE	5.95E-07	1.90E-08	1.30E+00		7.73E-07	2.47E-06	1.39E-06	4.43E-06	6.00E-05		2.31E-02	7.38E-02
HEPTACHLOR EPOXIDE	7.70E-08	5.90E-07	9.10E+00		7.00E-07	5.37E-06	1.80E-07	1.38E-06	1.30E-05		1.38E-02	1.06E-01
LINDANE (GAMMA-BHC)	5.55E-07	9.66E-06	1.30E+00		7.22E-07	1.26E-05	1.30E-06	2.25E-05	3.00E-04		4.32E-03	7.51E-02
TRANS-NONACHLOR	5.85E-07	1.28E-06		ND	-	_	1.37E-06	2.99E-06	-	ND	_	
o,p'-DDD	3.10E-07	1.90E-06		ND	-	_	7.24E-07	4.44E-06		ND		_
o,p'-DDE	1.98E-07	4.01E-07		ND	_	_	4.63E-07	9.36E-07		ND	_	
o,p'-DDT	9.12E-07	8.10E-06		ND	-		2.13E-06	1.89E-05	- 0	ND	-	
p.p'-DDD	2.01E-06	5.31E-08	2.40E-01		4.82E-07	1.27E-06	4.69E-06	1.24E-05		ND	-	
p,p'-DDE	2.49E-06	4.74E-06	3.40E-01		8.46E-07	1.61E-06	5.81E-06	1.11E-05	 .	ND	_	-
p,p'-DDT	3.11E-06	1.65E-05	3.40E-01		1.06E-06	5.62E-06	7.26E-06	3.86E-05	5.00E-04		1.45E-02	7.72E-02

TABLE 5-23
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AROUND SEAVEY ISLAND FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	GENI	C RISKS	ya ya wa sa		NO	NCARCINOGE	ENIC F	IISKS	
	CHRO	NIC					CHROI	VIC .	the state of the state of	13 8 1 1	CHEMICAL	
	DAIL	Y	ORAL		CHEMICAL	_	DAILY	•			SPECIFIC	
	INTAR	Œ	SLOPE		SPECIFIC		INTAK	E			HAZARD	
	(mg/kg/	day)	FACTOR		RISK	1	(mg/kg/d	lay)	RfD		QUOTIEN	Τ .
ANALYTE	AVG	MAX	(mg/kg/day)-1		AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS						•						
ANTHRACENE	4.04E-06	1.51E-05		ND	-	-	9.43E-06	3.53E-05	3.00E-01		3.14E-05	1.18E-04
BENZO(E)PYRENE	8.30E-06	1.78E-05		ND		-	1.94E-05	4.16E-05		ND	-	_
CHRYSENE	8.70E-06	1.69E-05	5.80E+00		5.05E-05	9.82E-05	2.03E-05	3.95E-05		ND	-	-
FLUORANTHENE	2.07E-05	3.25E-05		ND	_	-	4.82E-05	7.59E05	4.00E-02		1.21E-03	1.90E-03
PERYLENE	4.42E-06	9.80E-06		ND	_	-	1.03E-05	2.29E-05		ND	-	-
PHENANTHRENE	8.15E-06	1.32E-05		ND	-	_	1.90E05	3.07E-05	4.00E-03		4.75E-03	7.67E-03
PYRENE	1.88E-05	3.10E-05		ND	_	-	4.38E-05	7.23E-05	3.00E-02		1.46E-03	2.41E-03
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	4.58E-05	1.13E-04	7.70E+00		3.53E-04	8.71E-04	1.07E-04	2.64E-04		ND	-	_
					AVG	MAX					AVG	MAX
				CUMULATIV	E NONCARCI	NOGENIC						
UMULATIVE CARCINOGENIC RISK:					3.36E-03	6.53E-03	HAZARD QU	OTIENT:			1.63E+01	3.14E+01

TABLE 5-24
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GEN	IC RISKS			NC	NCARCINOGI	ENIC F	RISKS	
	CHRO DAIL INTAI (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	T 1 1	CHRO DAIL'I INTAK (mg/kg/k	NIC (Œ	RfÖ		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
ALUMINUM	7.12E-02	1.10E-01	[ND	-	- ,	1.66E-01	2.56E-01	2.90E+00	1	5.73E-02	8.82E-02
ARSENIC	2.64E-03	5.13E-03	1.75E+00		4.63E-03	8.98E-03	6.17E-03	1.20E-02	3.00E-04	<u> </u>	2.06E+01	3.99E+01
CADMIUM	5.39E-04	6.77E-04		ND	_	_	1.26E-03	1.58E-03	1.00E-03	İ	1.26E+00	1.58E+00
CHROMIUM	1.05E-03	1.41E-03		ND	_	_	2.46E-03	3.29E-03	5.00E-03		4.92E-01	6.57E-01
COPPER	2.04E-03	2.96E-03		ND	_	- 1	4.76E-03	6.90E-03	3.70E-02	<u> </u>	1.29E-01	1.87E-01
IRON	1.54E-01	2.25E-01		ND	_	-	3.59E-01	5.26E-01		ND	_	_
LEAD	2.64E-03	4.33E-03		ND	-	_	6.17E-03	1.01E-02		ND		-
MANGANESE	4.50E-03	1.33E-02		ND	_	_	1.05E-02	3.10E-02	1.00E-01		1.05E-01	3.10E-01
MERCURY	8.76E-05	1.36E-04	-	ND	-	_	2.04E-04	3.16E-04	3.00E-04		6.81E-01	1.05E+00
NICKEL	5.82E~04	1.09E-03		ND	-	- 1	1.36E-03	2.55E-03	2.00E-02		6.80E-02	1.27E-01
SILVER	2.39E-04	9.51E-04		ND	_	- 1	5.58E-04	2.22E-03	5.00E-03		1.12E-01	4.44E-01
ZINC	3.24E-02	4.31E-02		ND	-	-1	7.55E-02	1.01E-01	2.00E-01		3.77E-01	5.03E-01
PESTICIDES												
ALDRIN	4.15E-07	8.42E07	1.70E+01		7.06E-06	1.43E-05	9.69E-07	1.96E-06	3.00E-05		3.23E-02	6.55E-02
ALPHA-CHLORDANE	1.25E-06	2.69E-06	1.30E+00		1.63E-06	3.50E-06	2.92E-06	6.28E-06	6.00E-05		4.87E02	1.05E-01
HEPTACHLOR	1.35E-07	4.67E-08	4.50E+00		6.09E-07	2.10E-07	3.16E-07	1.09E-07	5.00E-04		6.31E-04	2.18E-04
HEPTACHLOR EPOXIDE	7.23E-08	1.40E-08	9.10E+00		6.58E-07	1.27E-07	1.69E-07	3.27E-08	1.30E-05		1.30E-02	2.51E-03
HEXACHLOROBENZENE	2.24E-07	7.70E-08	1.60E+00		3.58E-07	1.23E-07	5.23E-07	1.80E-07	8.00E-04		6.53E-04	2.25E-04
LINDANE (GAMMA-BHC)	1.31E-07	3.59E-07	1.30E+00		1.70E-07	4.67E-07	3.05E-07	8.38E-07	3.00E-04		1.02E-03	2.79E-03
MIREX	1.61E-07	3.45E-07	1.80E+00		2.90E-07	8.21E-07	3.76E-07	8.06E-07	2.00E-04		1.88E-03	4.03E-03
TRANS-NONACHLOR	1.12E-06	2.81E-06		ND	_	-	2.62E-06	6.56E-06		ND	-	4.002 00
o,p'-DDD	9.45E-07	3.18E-06		ND	_		2.20E-06	7.43E-06		ND		 -
o,p'-DDE	1.73E-07	1.98E-07		ND	-		4.03E-07	4.63E-07		ND		
o,p'-DDT	5.48E-07	1.43E-06		ND	_		1.28E-06	3.34E-06		ND		
p,p'DDD	5.98E-06	1.64E-05	2.40E01		1.43E-06	3.94E-06	1.40E-05	3.84E-05		ND		
p,p'DDE	4.04E-06	1.07E-05	3.40E-01		1.37E-06	3.63E-06	9.42E-06	2.49E-05		ND		
p,p'-DOT	2.37E-06	5.35E-06	3.40E-01		8.06E-07	1.82E-06	5.53E-06	1.25E-05	5.00E-04		1.11E-02	2.50E-02

TABLE 5-24
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NC	NCARCINOGE	NIC P	NISKS	
	CHRO DAIL' INTAK (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	r E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIENT	
ANALYTE	AVG	MAX	(mg/kg/day)-1	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
BENZO(A)ANTHRACENE	5.13E-06	1.40E-05	5.80E+00		2.98E-05	8.14E-05	1.20E-05	3.28E-05		ND		
BENZO(E)PYRENE	1.50E-05	3.08E-05		ND	-	_	3.49E-05	7.18E-05		ND	- 1	
CHRYSENE	1.08E-05	2.10E-05	5.80E+00		6.25E-05	1.22E-04	2.51E-05	4.90E-05		ND	-	
FLUORANTHENE	2.62E-05	6.30E-05	-	ND	_	_	6.10E-05	1.47E-04	4.00E-02		1.53E-03	3.67E-03
PERYLENE	4.76E-06	9.14E-06		ND	-	_	1.11E-05	2.13E-05		ND	-	
PHENANTHRENE	6.42E-06	1.22E-05		ND	_	-	1.50E-05	2.86E-05	4.00E-03		3.75E-03	7.14E-03
PYRENE	2.58E05	5.60E-05		ND	-	_	6.03E-05	1.31E-04	3.00E-02		2.01E-03	4.35E-03
POLYCHLORINATED BIPHENYLS (PCBs)												بننديدين
TOTAL PCBs (AROCHLOR)	6.63E-05	1.40E-04	7.70E+00		5.11E-04	1.08E-03	/1.55E-04	3.27E-04		ND	-	
					AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	JMULATIVE CARCINOGENIC RISK:							E NONCARCI OTIENT:	NOGENIC		2.40E+01	4.51E+01

TABLE 5-25
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT YORK HARBOR SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	OGENI	C RISKS		15 250	NO	NCARCINOGI	ENIC I	RISKS	
	CHRC DAIL INTAI (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICA SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICA SPECIFIC HAZARD QUOTIEN	;
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)	Tiryti.	AVG	MAX
INORGANICS	· .								(, , , , , , , , , , , , , , , , , , ,			
ALUMINUM	5.82E-02	7.94E-02		ND	-	_	1,36E-01	1.85E-01	2.90E+00	}	4.68E-02	6.39E-02
ARSENIC	1.29E-03	2.26E-03	1.75E+00		2.25E-03	3.96E-03	3.00E-03	5.28E-03	3.00E-04	 	1.00E+01	1.76E+01
CADMIUM	4.46E-04	5.03E-04		ND	_	_	1.04E-03	1.17E-03	1.00E-03	 -	1.04E+00	1.17E+00
CHROMIUM	6.14E-04	7.90E-04		ND	-	-	1.43E-03	1.84E-03	5.00E-03	t	2.87E-01	3.69E-01
COPPER	2.01E-03	2.23E-03		ND			4.68E-03	5.20E-03	3.70E-02	 	1.27E-01	1.40E-01
IRON	1.18E-01	1.45E-01		ND	_	_	2.76E-01	3.38E-01		ND	_	
LEAD	6.12E-04	8.98E-04		ND	_	_	1.43E-03	2.10E-03		ND	<u> </u>	
MANGANESE	2.77E-03	3.38E-03		ND	-	_	6.47E-03	7.89E-03	1.00E-01	· · · ·	6.47E-02	7.89E-02
MERCURY	9.86E-05	1.58E-04		ND	_	_	2.30E-04	3.69E-04	3.00E-04		7.67E-01	1.23E+00
NICKEL	3.61E-04	4.67E-04		ND	_	_	8.43E-04	1.09E-03	2.00E-02		4.22E-02	5.45E-02
SILVER	3.11E-05	4.22E-05		ND	_	-	7.25E-05	9.85E-05	5.00E-03		1.45E-02	1.97E-02
ZINC	2.66E-02	3.02E-02		ND	-		6.20E-02	7.06E-02	2.00E-01		3.10E-01	3.53E-01
PESTICIDES												
ALDRIN	2.02E-07	4.62E-07	1.70E+01		3.44E-08	7.85E-06	4.72E-07	1.08E-06	3.00E-05		1.57E-02	3.59E-02
ALPHA-CHLORDANE	8.98E-07	2.36E-06	1.30E+00		1.17E-06	3.06E-06	2.10E-06	5.50E-06	6.00E-05		3.49E-02	9.17E-02
HEPTACHLOR	5.36E-07	1.78E-06	4.50E+00		2.41E-06	8.03E-06	1.25E-06	4.16E-06	5.00E-04		2.50E-03	8.33E-03
TRANS-NONACHLOR	1.34E-06	2.72E-06		ND	-	_	3.12E-06	6.35E-06		ND	_	
o,p'-DDD	7.14E-07	1.24E-06		ND	-	-	1.67E-06	2.88E-06		ND		-
o,p'-DDT	2.39E-07	5.48E-07		ND	_		5.57E-07	1.28E-06		ND	_	
p,p'-DDD	1.83E-06	2.33E-06	2.40E-01		4.38E-07	5.59E-07	4.26E-06	5.43E-06		ND		
p,p'-DDE	1.70E-06	2.09E-06	3.40E-01		5.78E-07	7.10E-07	3.97E-06	4.87E-06		ND		
p,p'-DDT	2.58E-06	6.90E-06	3.40E-01		8.76E-07	2.34E-06	6.01E-06	1.61E-05	5.00E-04		1.20E-02	3.22E-02
POLYAROMATIC HYDROCARBONS							0.012 00	1.012 00	0:002 04		1.202-02	3.22L-02
FLUORANTHENE	1.17E-05	1.64E-05		ND		_	2.72E-05	3.84E-05	4.00E-02		6.81E-04	9.59E-04
PHENANTHRENE	8.05E-08	1.50E-05		ND	 -	 	1.88E-05	3.51E-05	4.00E-02		4.70E-03	8.78E-03
PYRENE	7.48E-08	1.33E-05		ND		 	1.74E-05	3.10E-05	3.00E-02		5.81E-04	1.03E-03
POLYCHLORINATED BIPHENYLS (PCBs)						l1		u	5.55E 02		0.01E-07	1.031-03
TOTAL PCBs (AROCHLOR)	3.19E-05	3.88E-05	7.70E+00		2.46E-04	2.99E-04	7.44E-05	9.05E-05		ND		
					AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					2.50E-03		CUMULATIVE		NOGENIC		1.28E+01	2.13E+01

TABLE 5-26
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT THE GREAT BAY ESTUARY SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS	and the first		NC	NCARCINOGE	NIC F	RISKS	Harris Ball
	CHRO DAIL' INTAK (mg/kg/	Ya'. KE	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRON DAILY INTAK (mg/kg/d		RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	ing the second
ANALYTE	AVG	MAX	(mg/kg/day)~	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	1.03E-01	1.55E-01		ND	-	-	2.40E-01	3.61E-01	2.90E+00		8.27E-02	1.24E-01
ARSENIC	2.55E-03	4.15E-03	1.75E+00		4.47E-03	7.27E-03	5.95E-03	9.69E-03	3.00E-04		1.98E+01	3.23E+01
CADMIUM	6.44E-04	9.83E-04		ND	_	-	1.50E-03	2.29E-03	1.00E-03		1.50E+00	2.29E+00
CHROMIUM	1.44E-03	1.97E-03		ND	-	- 1	3.35E-03	4.59E-03	5.00E-03		6.70E-01	9.17E-01
COPPER	2.28E-03	2.62E-03		ND	-	-	5.33E-03	6.11E-03	3.70E-02		1.44E-01	1.65E-01
IRON	2.08E-01	2.85E-01		ND	_	-	4.84E-01	6.64E-01		ND	_	_
LEAD	1.23E-03	1.54E-03		ND	_	- 1	2.87E-03	3.60E-03		ND	_	_
MANGANESE	1.34E-02	2.63E-02		ND	_	-	3.12E-02	6.13E-02	1.00E-01		3.12E-01	6.13E-01
MERCURY	9.38E-05	1.33E-04		ND	-	-1	2.19E-04	3.10E-04	3.00E-04		7.29E-01	1.03E+00
NICKEL	6.30E-04	7.18E-04		ND		_	1.47E-03	1.68E-03	2.00E-02		7.36E-02	8.38E-02
SILVER	4.81E-04	6.40E-04		ND	_	-	1.12E-03	1.49E-03	5.00E-03		2.25E-01	2.99E-01
ZINC	3.45E-02	4.37E-02		ND	-	-	8.05E-02	1.02E-01	2.00E-01		4.02E-01	5.10E-01
PESTICIDES												
ALDRIN	6.13E-07	6.88E-07	1.70E+01		1.04E-05	1.17E-05	1.43E-06	1.61E-06	3.00E-05		4.77E-02	5.35E-02
ALPHA-CHLORDANE	1.68E-06	2.26E-06	1.30E+00		2.18E-06	2.94E-06	3.92E-06	5.27E-06	6.00E-05		6.53E-02	8.79E-02
LINDANE (GAMMA-BHC)	3.08E-07	1.19E-06	1.30E+00		4.00E-07	1.55E-06	7.18E-07	2.78E-06	3.00E-04		2.39E-03	9.27E-03
TRANS-NONACHLOR	1.38E-06	2.02E-06	7	ND	-	-	3.21E-06	4.72E-06		ND	-	-
o,p'-DDD	6.30E-07	1.16E-06		ND	-	-	1.47E-06	2.70E-06	,	ND	-	_
o,p'-DDT	2.10E-07	5.69E-07		ND	_	-	4.90E-07	1.33E-06		ND	-	-
p,p'-DOO	3.84E-06	5.82E-06	2.40E-01		9.21E-07	1.40E-06	8.95E-06	1.36E-05		ND	_	_
p,p'-DDE	5.61E-06	1.05E-05	3.40E-01		1.91E-06	3.56E-06	1.31E-05	2.44E-05		ND		_
p,p'-DDT	1.47E-06	3.75E-06	3.40E-01		5.01E-07	1.28E-06	3.44E06	8.76E-06	5.00E-04		6.88E-03	1.75E-02

TABLE 5-26
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF MUSSELS CAUGHT AT THE GREAT BAY ESTUARY SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS	and the second of the second o		NO	NCARCINOGI	ENIC F	RISKS	
	CHRO DAILY INTAK (mg/kg/c	Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	J	AVG	MAX	AVG	MAX	(mg/kg/day)	1.400	AVG	MAX
POLYAROMATIC HYDROCARBONS												
BENZO(A)ANTHRACENE	1.38E-05	2.80E-05	5.80E+00		8.01E-05	1.62E-04	3.22E-05	6.53E-05		ND	-	-
BENZO(A)PYRENE	1.62E-05	2.80E-05	5.80E+00		9.38E-05	1.62E-04	3.77E-05	6.53E-05		ND	-	_
BENZO(E)PYRENE	3.51E-05	6.53E-05		ND	_	-	8.18E-05	1.52E-04		ND	_	-
CHRYSENE	2.13E-05	3.73E-05	5.80E+00		1.24E-04	2.16E-04	4.98E-05	8.71E-05		ND	-	_
FLUORANTHENE	2.73E-05	4.20E-05		ND	_	-	6.36E-05	9.80E-05	4.00E-02		1.59E-03	2.45E-03
PERYLENE	1.69E-05	2.57E-05		ND	-	-	3.94E-05	5.99E-05		ND	_	-
PHENANTHRENE	3.69E-06	9.75E-06		ND	-	_	8.62E-06	2.28E-05	4.00E-03		2.15E-03	5.69E-03
PYRENE	4.10E-05	8.16E-05		ND	-	-	9.56E-05	1.91E-04	3.00E-02		3.19E-03	6.35E-03
POLYCHLORINATED BIPHENYLS (PCBs)								1				
TOTAL PCBs (AROCHLOR)	2.10E-05	8.47E-05	7.70E+00		1.62E-04	6.52E-04	4.90E-05	1.98E-04		ND	-	-
					AVG	MAX					AVG	MAX
							CUMULATIV	E NONCARCI	NOGENIC			
CUMULATIVE CARCINOGENIC RISK:	MULATIVE CARCINOGENIC RISK:					8.48E-03	HAZARD QU	OTIENT:			2.41E+01	3.85E+01

TABLE 5-27
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF FLOUNDER FILLET CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	GENI	C RISKS			NO	NCARCINOGE	ENIC P	IISKS	
	CHRO DAIL' INTAK (mg/kg/	r Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	Z	CHRON DAILY INTAK (mg/kg/d	5	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	L.	AVG	MAX	AVG	MAX	(mg/kg/day)	, I	AVG	MAX
INORGANICS												
ALUMINUM	5.04E-04	8.50E-04		ND	_	-	1.18E-03	1.98E-03	2.90E+00		4.06E-04	6.84E-04
ARSENIC	4.67E-04	5.55E-04	1.75E+00		8.17E-04	9.71E-04	1.09E-03	1.29E-03	3.00E-04		3.63E+00	4.32E+00
CADMIUM	1.42E-08	3.71E-06		ND	-	_	3.31E-06	8.65E-06	1.00E-03		3.31E-03	8.65E-03
CHROMIUM	5.87E-05	1.03E-04		ND	_	-	1.37E-04	2.40E-04	5.00E-03		2.74E-02	4.81E-02
COPPER	7.42E-05	1.11E-04		ND	-	_	1.73E-04	2.60E-04	3.70E-02		4.68E-03	7.02E-03
IRON	1.26E-03	2.04E-03		ND	-	-	2.95E-03	4.76E-03		ND	-	-
LEAD	1.23E-05	3.01E-05		ND	-		2.87E-05	7.03E-05		ND	_	_
MANGANESE	9.26E-05	2.46E-04		ND	-	-	2.16E-04	5.73E-04	1.00E-01		2.16E-03	5.73E-03
MERCURY	6.94E-06	1.11E-05		ND	-	-	1.62E-05	2.60E-05	3.00E-04		5.40E-02	8.65E-02
NICKEL	4.58E-05	5.60E-05		ND	_	-	1.07E-04	1.31E-04	2.00E-02		5.34E-03	6.53E-03
SILVER	1.86E-06	4.50E-06		ND	-	-	4.33E-06	1.05E-05	5.00E-03		8.67E-04	2.10E-03
ZINC	2.38E-03	3.34E-03		ND	-	-	5.56E-03	7.79E-03	2.00E-01		2.78E-02	3.89E-02
PESTICIDES												
ALDRIN	8.33E-08	1.90E-07	1.70E+01		1.42E-06	3.23E-06	1.94E-07	4.44E-07	3.00E-05		6.48E-03	1.48E-02
ALPHA-CHLORDANE	9.62E-08	2.70E-07	1.30E+00		1.25E-07	3.51E-07	2.25E-07	6.30E-07	6.00E-05		3.74E-03	1.05E-02
HEPTACHLOR	6.34E-08	1.90E-07	4.50E+00		2.85E-07	8.56E-07	1.48E-07	4.44E-07	5.00E-04		2.96E-04	8.88E-04
HEPTACHLOR EPOXIDE	5.27E-08	1.90E-07	9.10E+00		4.79E-07	1.73E-06	1.23E-07	4.44E-07	1.30E-05		9.45E-03	3.41E-02
HEXACHLOROBENZENE	2.34E-07	7.61E-07	1.60E+00		3.74E-07	1.22E-06	5.46E-07	1.78E-06	8.00E-04		6.82E-04	2.22E-03
LINDANE (GAMMA-BHC)	5.65E-08	1.90E-07	1.30E+00		7.35E-08	2.47E-07	1.32E-07	4.44E-07	3.00E-04		4.39E-04	1.48E-03
MIREX	6.29E-08	1.90E-07	1.80E+00		1.13E-07	3.42E-07	1.47E-07	4.44E-07	2.00E-04		7.34E-04	2.22E-03
TRANS-NONACHLOR	1.88E-07	4.23E-07		ND	_	_	4.38E-07	9.87E-07		ND		-
o,p'-DDD	8.62E-08	1.90E-07		ND		_	2.01E-07	4.44E-07		ND		_
o,p'-DDE	6.72E-08	1.90E-07		ND	-	_	1.57E-07	4.44E-07		ND	_	
o,p'-DDT	1.31E-07	2.82E-07	<u> </u>	ND	_	_	3.06E-07	6.57E-07		ND	-	
p,p'-DDD	2.29E-07	8.75E-07	2.40E-01	1	5.50E-08	2.10E-07	5.35E-07	2.04E-08		ND	_	
p.p'-DDE	9.48E-07	2.99E-06	3.40E-01		3.22E-07	1.02E-06	2.21E-06	6.98E-06		ND	_	
p.p'-DDT	3.97E-07	1.68E-06	3.40E-01	\vdash	1.35E-07	5.72E-07	9.26E-07	3.93E-06	5.00E-04	 ''' -	1.85E-03	7.85E-03
POLYCHLORINATED BIPHENYLS (PCBa)	3.87E-07	1,002-00	0.402-01			0.722 07	3.202 37	3.502 30	0.002 04	I!		7.552 00
TOTAL PCBs (AROCHLOR)	1.07E05	2.53E-05	7.70E+00		8,23E-05	1.95E-04	2,49E-05	5.91E-05		ND	_	
TOTAL PUBS (ANOCHLOR)	1.0/E=05	2.53€-05	7.702400	<u> </u>	8.23E=05	MAX	2,48L-V3	3.81E-03		1,10	AVG	MAX
<u>and specification in the terminal control of the c</u>								E NONCARCI	NOGENIC	er sept (Sign)		4.59E+00
CUMULATIVE CARCINOGENIC RISK:					9.03E-04	1.18E-03	HAZARD QU	OTIENT:			3.78E+00	4.59

TABLE 5-28
POTENTIAL RISK CALCULATED FOR THE CONSUMPTION OF FLOUNDER FILLET
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING RECREATIONAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	GENIC	RISKS		indo Her	NC	ONCARCINOGI	ENIC F	RISKS	
	CHRO DAIL INTAI (mg/kg/	Y	ORAL SLOPE FACTOR	er er joe. T	CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/d	E	Af O		CHEMICA SPECIFIC HAZARD QUOTIEN	; ;
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	2.86E-04	2.86E-04	•	ND		-	6.68E-04	6.68E-04	2.90E+00		2.30E-04	2.30E-04
ARSENIC	4.22E-04	4.22E-04	1.75E+00		7.38E-04	7.38E-04	9.84E-04	9.84E-04	3.00E-04		3.28E+00	3.28E+00
CHROMIUM	3.82E-05	3.82E-05	•	ND	_	-	8.91E-05	8.91E-05	* 5.00E-03		1.78E-02	1.78E-02
COPPER	4.70E-05	4.70E-05	•	ND	-		1.10E-04	1.10E-04	* 3.70E-02		2.96E-03	2.96E-03
IRON	6.40E-04	6.40E-04	• [ND	_	_	1.49E-03	1.49E-03	•	ND	-	-
LEAD	3.49E-06	3.49E-06	•	ND	_	_	8.14E-06	8.14E-06	•	ND	-	_
MANGANESE	2.66E-05	2.66E-05	•	ND	-	_	6.21E-05	6.21E-05	1.00E-01		6.21E-04	6.21E-04
MERCURY	6.12E-06	6.12E-06	*	ND	-	-	1.43E-05	1.43E-05	3.00E-04		4.76E-02	4.76E-02
NICKEL	3.68E-05	3.68E-05	•	ND	_	-	8.59E-05	8.59E-05	2.00E-02		4.29E-03	4.29E-03
SILVER	2.73E-06	2.73E-06	•	ND	_	-	6.36E-06	6.36E-06	5.00E-03		1.27E-03	1.27E-03
ZINC	1.66E-03	1.66E-03	•	ND	-	-	3.88E-03	3.88E-03	2.00E-01		1.94E-02	1.94E-02
PESTICIDES												
ALDRIN	1.17E-07	1.84E-07	1.70E+01		1.99E-06	3.12E-06	2.73E-07	4.29E-07	3.00E-05		9.09E-03	1.43E-02
ALPHA-CHLORDANE	4.92E-08	5.13E-08	1.30E+00		6.39E-08	6.66E-08	1.15E-07	1.20E-07	6.00E-05		1.91E-03	1.99E-03
HEPTACHLOR	4.71E-08	4.71E-08	4.50E+00		2.12E-07	2.12E-07	1.10E-07	1.10E-07	5.00E-04		2.20E-04	2.20E-04
HEPTACHLOR EPOXIDE	9.67E-09	1.10E-08	9.10E+00		8.80E-08	1.00E-07	2.26E-08	2.57E-08	1.30E-05		1.74E-03	1.98E-03
HEXACHLOROBENZENE	4.09E-08	5.03E-08	1.60E+00		6.55E-08	8.05E-08	9.55E-08	1.17E-07	8.00E-04		1.19E-04	1.47E-04
LINDANE (GAMMA-BHC)	1.98E-08	2.32E-08	1.30E+00		2.58E-08	3.02E-08	4.62E-08	5.42E-08	3.00E-04		1.54E-04	1.81E-04
MIREX	4.71E-08	4.71E-08	1.80E+00		8.47E-08	8.47E-08	1.10E-07	1.10E-07	2.00E-04		5.49E-04	5.49E-04
TRANS-NONACHLOR	7.34E-08	9.98E-08		ND	-	_	1.71E-07	2.33E-07		ND	-	_
o,p'-DDD	4.71E-08	4.71E-08	*	ND	_	_	1.10E-07	1.10E-07 1	•	ND	-	_
o,p'-DDE	4.46E-08	4.71E-08		ND	_	-	1.04E-07	1.10E-07	†- 	ND	-	_
o,p'-DDT	1.64E-07	2.82E-07		ND		_	3.84E-07	6.57E-07		ND		
p,p'-DDD	3.20E-08	4.71E-08	2.40E-01		7.68E-09	1.13E-08	7.47E-08	1.10E-07		ND	_	_
p,p'-DDE	2.12E-07	2.57E-07	3.40E-01	-	7.20E-08	8.74E-08	4.94E-07	6.00E-07	†	ND		_
p,p'-DDT	8.78E-07	1.68E-06	3.40E-01		2.99E-07	5.72E-07	2.05E-06	3.93E-06	5.00E-04		4.10E-03	7.85E-03
POLYCHLORINATED BIPHENYLS (PCBs)						1 30 [
TOTAL PCBs (AROCHLOR)	4.55E-06	5.85E-06	7.70E+00		3.51E-05	4.50E-05	1.06E-05	1.36E05		ND		
					AVG	MAX			<u> </u>		AVG	MAX
CUMULATIVE CARCINOGENIC RISK:		7.76E04	l f	CUMULATIVE	ENONGARGIN OTIENT:	IOGENIC		3.39E+00	3.40E+00			

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 5-29
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF FLOUNDER FILLET CAUGHT AROUND SEAVEY ISLAND RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	OGENI	C RISKS			NO	NCARCINOGE	NIC F	IISKS	West of the
	CHRO DAIL` INTAK (mg/kg/	Y KE	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	-	CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS									, , ,			
ALUMINUM	3.44E-04	3.96E-04		ND	_	1	8.03E-04	9.25E-04	2.90E+00		2.77E-04	3.19E-04
ARSENIC	5.34E-04	5.55E-04	1.75E+00		9.35E-04	9.71E-04	1.25E-03	1.29E-03	3.00E-04		4.15E+00	4.32E+00
CHROMIUM	7.50E-05	1.03E-04		ND	_	-	1.75E-04	2.40E-04	5.00E-03		3.50E-02	4.81E-02
COPPER	7.33E-05	7.69E-05		ND	_	_	1.71E-04	1.79E-04	3.70E-02		4.62E-03	4.85E-03
IRON	8.99E-04	1.20E-03		ND	-	- 1	2.10E-03	2.79E-03		ND	-	-
LEAD	1.76E-05	3.01E-05		ND	-	-	4.11E-05	7.03E-05		ND	_	-
MANGANESE	1.33E-04	2.46E-04		ND	-	-	3.11E-04	5.73E-04	1.00E-01		3.11E-03	5.73E-03
MERCURY	4.28E-06	6.97E-06		ND	_	_	9.99E-06	1.63E-05	3.00E-04		3.33E-02	5.42E-02
NICKEL	4.39E-05	4.82E-05		ND		-	1.02E-04	1.12E-04	2.00E-02		5.12E-03	5.62E-03
ZINC	2.76E-03	3.34E-03		ND	_	-	6.44E-03	7.79E-03	2.00E-01		3.22E-02	3.89E-02
PESTICIDES												
ALDRIN	1.27E-07	1.90E-07	1.70E+01		2.16E-06	3.23E-06	2.96E-07	4.44E-07	3.00E-05		9.86E-03	1.48E-02
ALPHA-CHLORDANE	1.27E-07	1.90E-07	1.30E+00		1.65E-07	2.47E-07	2.98E-07	4.44E-07	6.00E-05		4.93E-03	7.40E-03
HEPTACHLOR	1.27E-07	1.90E-07	4.50E+00		5.71E-07	8.56E-07	2.96E-07	4.44E-07	5.00E-04		5.92E-04	8.88E-04
HEPTACHLOR EPOXIDE	1.27E-07	1.90E-07	9.10E+00		1.15E-06	1.73E-06	2.96E-07	4.44E-07	1.30E-05		2.28E-02	3.41E-02
HEXACHLOROBENZENE	5.07E-07	7.61E-07	1.60E+00		8.12E-07	1.22E-06	1.18E-06	1.78E-06	8.00E-04		1.48E-03	2.22E-03
LINDANE (GAMMA-BHC)	1.27E-07	1.90E-07	1.30E+00		1.65E-07	2.47E-07	2.96E-07	4.44E-07	3.00E-04		9.86E-04	1.48E-03
MIREX	1.27E-07	1.90E-07	1.80E+00		2.28E-07	3.42E-07	2.96E-07	4.44E-07	2.00E-04		1.48E-03	2.22E-03
TRANS-NONACHLOR	2.54E-07	3.49E-07		ND	-	-	5.92E-07	8.14E-07		ND	-	
o,p*-DDD	1.27E-07	1.90E-07		ND	-	-	2.96E-07	4.44E-07		ND	_	
o,p'-DDE	1.27E-07	1.90E-07		ND	-	-	2.96E-07	4.44E-07		ND		
o,p'-DDT	1.27E-07	1.90E-07		ND	_	_	2.96E-07	4.44E-07		ND		_
p,p'-DDD	1.27E-07	1.90E-07	2.40E-01		3.04E-08	4.57E-08	2.96E-07	4.44E-07		ND		
p,p'-DDE	1.11E-06	1.68E-06	3.40E-01		3.77E-07	5.71E-07	2.59E-06	3.92E-06		ND		
p,p'-DDT	1.27E-07	1.90E-07	3.40E-01		4.31E-08	6.47E-08	2.96E-07	4.44E07	5.00E-04		5.92E-04	8.88E-04
POLYCHLORINATED BIPHENYLS (PCBs)			5.752 51			J 2 00			J.JJE 01	<u> </u>	2.022-07	J.JJE-04
TOTAL PCBs (AROCHLOR)	1.36E-05	1.98E05	7.70E+00		1.05E-04	1.52E-04	3.17E-05	4.62E-05		ND	_	_
	1.002-00	1.502-03	7.702+00		AVG	MAX	0.172 00	3.02E-03			AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	•	1.05E-03		CUMULATIVI HAZARD QU		NOGENIC		4.31E+00	4.54E+00			

TABLE 5-30
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF FLOUNDER FILLET CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	OGENI	C RISKS			NC	NCARCINOG	ENIC I	RISKS	
	CHRO DAIL' INTAK (mg/kg/	Y (E	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	NIC E	RiD		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	6.84E-04	8.50E-04		ND	-	_	1.60E-03	1.98E-03	2.90E+00		5.50E-04	6.84E-04
ARSENIC	4.37E-04	5.20E-04	1.75E+00		7.66E-04	9.10E-04	1.02E-03	1.21E-03	3.00E-04		3.40E+00	4.04E+00
CADMIUM	1.88E-06	3.71E-06		ND	_	-	4.38E-06	8.65E-06	1.00E-03		4.38E-03	8.65E-03
CHROMIUM	5.47E-05	8.16E-05		ND	_	_	1.28E-04	1.90E-04	5.00E-03	<u> </u>	2.55E-02	3.81E-02
COPPER	8.39E-05	1.11E-04		ND	_	_	1.96E-04	2.60E-04	3.70E-02		5.29E-03	7.02E-03
IRON	1.72E-03	2.04E-03		ND	-	-	4.01E-03	4.76E-03		ND		-
LEAD	1.17E-05	1.55E-05		ND	-		2.74E-05	3.62E-05		ND	_	
MANGANESE	8.74E-05	1.85E-04		ND	_	-	2.04E-04	4.33E-04	1.00E-01	<u> </u>	2.04E-03	4.33E-03
MERCURY	1.00E-05	1.11E-05		ND	_		2.33E-05	2.60E-05	3.00E-04		7.78E-02	8.65E-02
NICKEL	5.00E-05	5.60E-05		ND		-	. 1.17E-04	1.31E-04	2.00E-02		5.84E-03	6.53E-03
SILVER	2.07E-06	4.50E-06		ND		_	4.82E-06	1.05E-05	5.00E-03		9.64E-04	2.10E-03
ZINC	2.37E-03	3.05E-03		ND	_	-	5.53E-03	7.11E-03	2.00E-01		2.77E-02	3.56E-02
PESTICIDES									-			
ALDRIN	3.82E-08	4.76E-08	1.70E+01		6.50E07	8.08E-07	8.92E-08	1.11E-07	3.00E-05	ĺ	2.97E-03	3.70E-03
ALPHA-CHLORDANE	1.14E-07	2.70E-07	1.30E+00		1.48E-07	3.51E-07	2.65E-07	6.30E-07	6.00E-05		4.42E-03	1.05E-02
HEPTACHLOR	3.82E-08	4.76E-08	4.50E+00		1.72E-07	2.14E-07	8.92E-08	1.11E-07	5.00E-04		1.78E-04	2.22E-04
HEPTACHLOR EPOXIDE	3.82E-08	4.76E-08	9.10E+00		3.48E-07	4.33E-07	8.92E-08	1.11E-07	1.30E-05	-	6.86E-03	8.54E-03
HEXACHLOROBENZENE	1.76E-07	3.72E-07	1.60E+00		2.81E-07	5.95E-07	4.10E-07	8.68E-07	8.00E-04		5.13E-04	1.08E-03
LINDANE (GAMMA-BHC)	3.24E-08	4.37E-08	1.30E+00		4.21E-08	5.69E-08	7.56E-08	1.02E-07	3.00E-04		2.52E-04	3.40E-04
MIREX	3.71E-08	4.76E-08	1.80E+00		6.68E-08	8.56E-08	8.66E-08	1.11E-07	2.00E-04	-	4.33E-04	5.55E-04
TRANS-NONACHLOR	2.29E-07	4.23E-07		ND		_	5.34E-07	9.87E-07		ND	-	0.002-07
o,p'-DDD	9.42E-08	1.45E-07		ND			2.20E-07	3.37E-07	 .	ND		
o,p'-DDE	4.90E-08	9.76E-08		ND			1.14E-07	2.28E-07		ND		
o,p'-DDT	1.18E-07	2.63E-07		ND	_		2.75E-07	6.13E-07		ND		
p,p'-DDD	4.35E-07	8.75E-07	2.40E-01		1.04E-07	2.10E-07	1.02E-06	2.04E-06		ND		-
p,p'-DDE	1.33E-06	2.99E-06	3.40E-01		4.51E-07	1.02E-06	3.10E-06	6.98E-06	_	ND		 -
p,p'-DDT	1.78E-07	2.55E-07	3.40E-01		6.06E-08	8.66E-08	4.16E-07	5.94E-07	5.00E-04	NU	0.005.04	1 405 00
POLYCHLORINATED BIPHENYLS (PCBs)			9.402 01		J.00L-00	3.00L08	4.10107	J.84E-0/	5.00E=04		8.32E-04	1.19E-03
TOTAL PCBs (AROCHLOR)	1.28E-05	2.53E-05	7.70E+00		9.89E-05	1.95E-04	3.00E-05	5.91E-05		ND	-	
	1 1122 00 1		7.702.00		AVG	MAX	J.00E-03	J.#1E-03		NU	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:		8.67E-04		CUMULATIVE		NOGENIC		3.57E+00	4.26E+00			

TABLE 5-31
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF FLOUNDER FILLET CAUGHT AT YORK HARBOR SAMPLE LOCATIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	na Majakan sa		CARCINO	GEN	C RISKS			NO	NCARCINOGENIC	RISKS	
	CHRO DAILY INTAK (mg/kg/c	Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RiD	CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-1	alahus.	AVG	MAX	AVG	MAX	(mg/kg/day)	AVG	MAX
PESTICIDES											
ALPHA-CHLORDANE	1.24E-07	1.24E-07	1.30E+00		1.61E-07	1.61E-07	2.88E-07	2.88E-07	6.00E-05	4.81E-03	4.81E-03
TRANS-NONACHLOR	6.02E-08	6.02E-08		ND	-	_	1.41E-07	1.41E-07	ND	_	_
p,p'-DDD	1.11E-07	1.11E-07	2.40E-01		2.66E-08	2.66E-08	2.59E-07	2.59E-07	ND	-	-
p,p'-DDE	2.50E-07	2.50E-07	3.40E-01		8.52E-08	8.52E-08	5.84E-07	5.84E-07	ND	-	_
POLYCHLORINATED BIPHENYLS (PCBs)											
TOTAL PCBs (AROCHLOR)	4.29E-06	4.48E-06	7.70E+00		3.30E-05	3.45E-05	1.00E-05	1.05E-05	ND	-	-
			1 1 1		AVG	MAX				AVG	MAX
							CUMULATIV	E NONCARCI	INOGENIC		
CUMULATIVE CARCINOGENIC RISK:	AULATIVE CARCINOGENIC RISK:						HAZARD QU	OTIENT:		4.81E-03	4.81E-03

TABLE 5-32
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF FLOUNDER FILLET
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

Maria da da da da Maria da Mar	Maria de la compansión de la compansión de la compansión de la compansión de la compansión de la compansión de		CARCINOGENIC RISKS NONCARCINOGE							NIC P	IISKS	
	CHRO DAIL INTAK (mg/kg/c	É	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRON DAILY INTAK (mg/kg/d	E	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/dey)-1	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS	272											
ALUMINUM	1.23E-03	2.08E-03		ND	_		2.88E-03	4.85E03	2.90E+00		9.92E-04	1.67E-03
ARSENIC	1.14E-03	1.36E-03	1.75E+00		2.00E-03	2.37E-03	2.66E-03	3.16E-03	3.00E-04		8.88E+00	1.05E+01
CADMIUM	3.47E-06	9.07E-06		ND	_	- · -	8.09E-06	2.12E-05	1.00E-03		8.09E-03	2.12E-02
CHROMIUM	1.43E-04	2.52E-04		ND	_	_	3.35E-04	5.88E-04	5.00E-03		6.70E-02	1.18E-01
COPPER	1.81E-04	2.72E-04		ND	-	_	4.23E-04	6.35E-04	3.70E-02		1.14E-02	1.72E-02
IRON	3.09E-03	4.98E-03		ND		-	7.21E-03	1.16E-02		ND	ı	
LEAD	3.01E-05	7.36E-05		ND	-	-	7.02E-05	1.72E-04		ND	<u> </u>	<u> </u>
MANGANESE	2.26E-04	6.01E-04		ND	-	-	5.28E-04	1.40E-03	1.00E-01		5.28E~03	1.40E-02
MERCURY	1.70E-05	2.72E-05		DA	-	_	3.96E~05	6.35E-05	3.00E-04		1.32E-01	2.12E-01
NICKEL	1.12E-04	1.37E-04		DZ	-	_	2.61E-04	3.19E-04	2.00E-02]]	1.31E-02	1.60E-02
SILVER	4.54E-06	1.10E-05		ND	-		1.06E-05	2.57E-05	5.00E-03		2.12E-03	5.14E-03
ZINC	5.83E-03	8.16E-03		ND	-	-	1.36E-02	1.90E-02	2.00E-01		6.80E-02	9.52E-02
PESTICIDES												
ALDRIN	2.04E-07	4.65E-07	1.70E+01		3.46E-06	7.90E-06	4.75E-07	1.08E-06	3.00E-05		1.58E-02	3.62E-02
ALPHA-CHLORDANE	2.35E-07	6.59E-07	1.30E+00		3.06E-07	8.57E-07	5.49E-07	1.54E-06	6.00E-05		9.15E-03	2.56E-02
HEPTACHLOR	1.55E-07	4.65E-07	4.50E+00		6.97E-07	2.09E-06	3.61E-07	1.08E-06	5.00E-04		7.23E-04	2.17E-03
HEPTACHLOR EPOXIDE	1.29E-07	4.65E-07	9.10E+00		1.17E-06	4.23E-06	3.00E-07	1.08E-06	1.30E-05		2.31E-02	8.35E-02
HEXACHLOROBENZENE	5.71E-07	1.86E-06	1.60E+00		9.14E-07	2.98E-06	1.33E-06	4.34E-06	8.00E-04		1.67E~03	5.42E-03
LINDANE (GAMMA-BHC)	1.38E-07	4.65E-07	1.30E+00		1.80E-07	6.04E-07	3.22E-07	1.08E-06	3.00E-04		1.07E-03	3.62E-03
MIREX	1.54E-07	4.65E-07	1.80E+00		2.77E-07	8.37E-07	3.59E-07	1.08E-06	2.00E-04		1.79E-03	5.42E-03
TRANS-NONACHLOR	4.59E-07	1.03E-06		ND	_	-	1.07E-06	2.41E-06		ND	-	_
o,p'-DDD	2.11E-07	4.65E-07		ND	_		4.92E-07	1.08E-06		ND		
o,p'-DDE	1.64E-07	4.65E-07		ND	-	-	3.84E-07	1.08E-06		ИD	-	_
o,p'-DDT	3.20E-07	6.88E-07		ND	_	_	7.47E-07	1.61E-06		ND	-	-
p,p'-DDD	5.60E-07	2.14E-06	2.40E-01		1.34E-07	5.13E-07	1.31E-06	4.99E-06		ND	-	-
p,p'-DDE	2.32E-08	7.31E-06	3.40E-01		7.88E-07	2.48E-06	5.41E-06	1.71E-05		ND	-	-
p,p'-DDT	9.70E-07	4.11E-06	3.40E-01		3.30E-07	1.40E-06	2.26E-06	9.60E-06	5.00E-04		4.52E-03	1.92E-02
POLYCHLORINATED BIPHENYLS (PCBe)												
TOTAL PCBs (AROCHLOR)	2.61E-05	8.19E-05	7.70E+00		2.01E-04	4.77E-04	6.10E-05	1.44E-04		ND	_	-
1017121 023 (110011201)		3	1	-	AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	<u> </u>	2.21E-03		CUMULATIV HAZARD QU		INOGENIC		9.25E+00	1.12E+01			

TABLE 5-33
POTENTIAL RISK CALCULATED FOR THE CONSUMPTION OF FLOUNDER FILLET
CAUGHT AT THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	GENIC	RISKS			NC	NCARCINOGI	ENIC F	RISKS	
	CHRO DAIL INTAI (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAI SPECIFIC RISK		CHRO DAILY INTAK (mg/kg/k	r SE	RID		CHEMICAI SPECIFIC HAZARD QUOTIEN	;
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	2.11E-03	2.11E-03	*	ND	_		4.91E-03	4.91E-03 °	2.90E+00		1.69E-03	1.69E-03
ARSENIC	3.10E-03	3.10E-03	1.75E+00		5.43E-03	5.43E-03	7.24E-03	7.24E-03 °	3.00E-04	-	2.41E+01	2.41E+01
CHROMIUM	2.81E-04	2.81E-04	•	ND	_	-	6.55E-04	6.55E-04 1	5.00E-03		1.31E-01	1.31E-01
COPPER	3.46E-04	3.46E-04	•	ND	-	-	8.07E-04	8.07E-04 '	3.70E-02	<u> </u>	2.18E-02	2.18E02
IRON	4.71E-03	4.71E-03	*	ND	_		1.10E-02	1.10E-02		ND		
LEAD	2.57E-05	2.57E-05	•	ND	-	-	5.99E-05	5.99E-05 1		ND	_	_
MANGANESE	1.96E-04	1.96E-04	•	ND	_	-	4.57E-04	4.57E-04 *	1.00E-01		4.57E-03	4.57E-03
MERCURY	4.50E-05	4.50E-05	•	ND	-	-	1.05E-04	1.05E-04	3.00E-04		3.50E-01	3.50E-01
NICKEL	2.71E-04	2.71E-04	-	ND	_	_	6.32E-04	6.32E-04 *	2.00E-02		3.16E-02	3.16E-02
SILVER	2.01E-05	2.01E-05	•	ND	-	_	4.68E-05	4.68E-05 *	5.00E-03		9.36E-03	9.36E-03
ZINC	1.22E-02	1.22E-02	•	ND	_	_	2.86E-02	2.86E-02	2.00E-01		1.43E-01	1.43E-01
PESTICIDES												
ALDRIN	8.60E-07	1.35E-06	1.70E+01		1.46E-05	2.30E-05	2.01E-06	3.16E-06	3.00E-05		6.69E-02	1.05E-01
ALPHA-CHLORDANE	3.62E-07	3.77E-07	1.30E+00		4.70E-07	4.90E-07	8.44E-07	8.80E-07	6.00E-05		1.41E-02	1.47E-02
HEPTACHLOR	3.46E-07	3.46E-07 1	4.50E+00		1.56E-06	1.56E-06	8.08E-07	8.08E-07 *	5.00E-04		1.62E-03	1.62E-03
HEPTACHLOR EPOXIDE	7.11E-08	8.12E-08	9.10E+00		6.47E-07	7.39E-07	1.66E-07	1.89E07	1.30E-05		1.28E-02	1.46E-02
HEXACHLOROBENZENE	3.01E-07	3.70E-07	1.60E+00		4.82E-07	5.93E-07	7.03E-07	8.64E-07	8.00E-04		8.78E-04	1.08E-03
LINDANE (GAMMA-BHC)	1.46E-07	1.71E-07	1.30E+00		1.90E-07	2.22E-07	3.40E-07	3.99E-07	3.00E-04		1.13E-03	1.33E-03
MIREX	3.46E-07	3.46E-07 ⁴	1.80E+00		6.24E-07	6.24E-07	8.08E-07	8.08E-07 *	2.00E-04		4.04E-03	4.04E-03
TRANS-NONACHLOR	5.40E-07	7.34E-07		ND			1.26E-06	1.71E-06		ND	-	
o,p'DDD	3.46E-07	3.46E-07	•	ND		_	8.08E-07	8.08E-07 *		ND	_	_
o,p'-DDE	3.28E-07	3.46E-07		ND	_	_	7.65E-07	8.08E-07		ND		_
o,p'-DDT	1.21E-06	2.07E-06 *		ND	_	_	2.82E-06	4.84E-06 *		ND	-	
p,p'-DDD	2.36E-07	3.46E-07	2.40E-01		5.65E-08	8.31E-08	5.50E-07	8.08E-07	 	ND		ſ
p,p'-DDE	1.56E-06	1.89E-06	3.40E-01		5.30E-07	6.43E-07	3.63E-06	4.41E-06	 	ND	_	
p.p'-DDT	6.46E-06	1.24E-05	3.40E-01		2.20E-06	4.21E-06	1.51E-05	2.89E-05	5.00E-04		3.02E-02	5.78E-02
POLYCHLORINATED BIPHENYLS (PCBs)	31.32 00				2.202 00	7.272.00	1.012-03	2.002-00	0.00E-04		3.026-02	J.78E-02
TOTAL PCBs (AROCHLOR)	3.35E-05	4.30E05	7.70E+00		2.58E-04	3.31E-04	7.82E-05	1.00E-04		ND		
	,		,		AVG	MAX			1		AVG	MAX
							CUMULATIVI	E NONCARCIN	OGENIC			
MULATIVE CARCINOGENIC RISK:					5.71E-03		HAZARD QU		-	ĺ	2.50E+01	2.50E+01

^{*:} AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 5-34
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF FLOUNDER FILLET CAUGHT AROUND SEAVEY ISLAND FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NO	NCARCINOGE	NIC F	RISKS	
	CHRO DAIL INTAI (mg/kg/	Y (E	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	T	CHROI DAILY INTAK (mg/kg/c	5. 5 0. ja 180. ja	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	- !
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)	e ver	AVG	MAX
INORGANICS												
ALUMINUM	2.53E-03	2.92E-03		ND	_	-	5.91E-03	6.80E-03	2.90E+00		2.04E-03	2.35E-03
ARSENIC	3.93E-03	4.08E-03	1.75E+00		6.88E-03	7.14E-03	9.17E-03	9.53E-03	3.00E-04		3.06E+01	3.18E+01
CHROMIUM	5.52E-04	7.58E-04		ND	_	-	1.29E-03	1.77E-03	5.00E-03	-	2.57E-01	3.54E-01
COPPER	5.40E-04	5.66E-04		ND	-	-	1.26E-03	1.32E-03	3.70E-02		3.40E-02	3.57E-02
IRON	6.61E-03	8.79E-03		ND	_	-	1.54E-02	2.05E-02		ND	_	_
LEAD	1.29E-04	2.22E-04		ND		_	3.02E-04	5.17E-04		ND	-	_
MANGANESE	9.81E-04	1.81E-03		ND	•	_	2.29E-03	4.22E-03	1.00E-01		2.29E-02	4.22E-02
MERCURY	3.15E-05	5.13E-05		ND	-	-	7.35E-05	1.20E-04	3.00E-04		2.45E-01	3.99E-01
NICKEL	3.23E-04	3.55E-04		ND	-	_	7.54E-04	8.27E-04	2.00E-02		3.77E-02	4.14E-02
ZINC	2.03E-02	2.46E-02		ND	_	_	4.74E-02	5.73E-02	2.00E-01		2.37E-01	2.86E-01
PESTICIDES									•			
ALDRIN	9.33E-07	1.40E-06	1.70E+01		1.59E-05	2.38E-05	2.18E-06	3.27E-06	3.00E-05		7.26E-02	1.09E-01
ALPHA-CHLORDANE	9.33E-07	1.40E-06	1.30E+00		1.21E-06	1.82E-06	2.18E-06	3.27E-06	6.00E-05		3.63E-02	5.44E-02
HEPTACHLOR	9.33E-07	1.40E-06	4.50E+00		4.20E-06	6.30E-06	2.18E-06	3.27E-06	5.00E-04		4.35E-03	6.53E-03
HEPTACHLOR EPOXIDE	9.33E-07	1.40E-06	9.10E+00		8.49E-06	1.27E-05	2.18E-06	3.27E-06	1.30E-05		1.67E-01	2.51E-01
HEXACHLOROBENZENE	3.73E-06	5.60E-06	1.60E+00		5.97E-06	8.96E-06	8.71E-06	1.31E-05	8.00E-04		1.09E-02	1.63E-02
LINDANE (GAMMA-BHC)	9.33E-07	1.40E06	1.30E+00		1.21E-06	1.82E-06	2.18E-06	3.27E-06	3.00E-04		7.26E-03	1.09E-02
MIREX	9.33E-07	1.40E-06	1.80E+00		1.68E-06	2.52E-06	2.18E-06	3.27E-06	2.00E-04		1.09E-02	1.63E-02
TRANS-NONACHLOR	1.87E-06	2.57E-06		ND		_	4.35E-06	5.99E-06		ND	-	
o,p'-DDD	9.33E-07	1.40E-08		ND	-	_	2.18E-06	3.27E-06		ND	_	
o,p'-DDE	9.33E-07	1.40E-06		ND	_	T	2.18E-06	3.27E-06		ND	_	_
o,p'-DDT	9.33E-07	1.40E-06		ND	-	_	2.18E-06	3.27E-06	· · · · · · · · · · · · · · · · · · ·	ND		
p,p'-DDD	9.33E-07	1.40E-06	2.40E-01	111	2.24E-07	3.36E-07	2.18E-06	3.27E-06		ND		
p,p'-DDE	8.16E-06	1.24E-05	3.40E-01		2.78E-06	4.20E-06	1.91E-05	2.88E-05	••	ND		_
p,p'-DDT	9.33E-07	1.40E-06	3.40E-01		3.17E-07	4.76E-07	2.18E-06	3.27E-06	5.00E-04		4.35E-03	6.53E-03
POLYCHLORINATED BIPHENYLS (PCBs)	8.55L-07	1.406-00	3.40L-01		J. 17 L-07	4.702-07	2.182-00	3.27 L-00	5.00E-04		7.30E-V3	0.53E=03
TOTAL PCBs (AROCHLOR)	9.99E-05	1.46E-04	7.70E+00		7.69E-04	1.12E-03	2.33E-04	3.40E-04		ND		
	1		,02,100	 	AVG	MAX		U.7UL-U7			AVG	MAX
CUMULATIVE CARCINOGENIC RISK:		· · · · · · · ·			7.69E-03		CUMULATIVI HAZARD QU		NOGENIC		3.17E+01	3.34E+01

TABLE 5-35
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF FLOUNDER FILLET
CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE GROUP LOCATIONS FOR SUBSISTENCE FISHING
RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NO	NCARCINOGI	NIC F	RISKS	
	CHRO DAILY INTAK (mg/kg/c	(Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	and the street of the street	CHROI DAILY INTAK (mg/kg/d	Ė	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-		AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	5.03E-03	6.25E-03		ND	-	-	1.17E-02	1.46E-02	2.90E+00		4.05E-03	5.03E-03
ARSENIC	3.22E-03	3.83E-03	1.75E+00		5.63E-03	6.69E-03	7.51E-03	8.93E-03	3.00E-04		2.50E+01	2.98E+01
CADMIUM	1.38E-05	2.73E-05		ND	-	-	3.22E-05	6.37E-05	1.00E-03		3.22E-02	6.37E-02
CHROMIUM	4.02E-04	6.00E-04		ND	_	-	9.39E-04	1.40E-03	5.00E-03		1.88E-01	2.80E-01
COPPER	6.18E-04	8.19E-04		ND	_	-	1.44E-03	1.91E-03	3.70E-02		3.89E-02	5.16E-02
IRON	1.26E-02	1.50E-02		ND		-	2.95E-02	3.50E-02		ND		_
LEAD	8.63E-05	1.14E-04		ND	-	_	2.01E-04	2.67E-04		ND	_	-
MANGANESE	6.43E-04	1.36E-03		ND	-	-	1.50E-03	3.18E-03	1.00E-01		1.50E-02	3.18E-02
MERCURY	7.36E-05	8.19E-05		ND	-	- 1	1.72E-04	1.91E-04	3.00E-04		5.72E-01	6.37E-01
NICKEL	3.68E-04	4.12E-04		ND	-	-	8.59E-04	9.61E-04	2.00E-02		4.29E-02	4.81E-02
SILVER	1.52E-05	3.31E-05		ND	-	- 1	3.55E-05	7.73E~05	5.00E-03		7.09E-03	1.55E-02
ZINC	1.74E-02	2.24E-02		ND	-	-	4.07E-02	5.23E-02	2.00E-01		2.04E-01	2.62E-01
PESTICIDES												
ALDRIN	2.81E-07	3.50E-07	1.70E+01		4.78E-06	5.95E-06	6.57E-07	8.16E-07	3.00E-05		2.19E-02	2.72E-02
ALPHA-CHLORDANE	8.36E-07	1.99E-06	1.30E+00		1.09E-06	2.58E-06	1.95E-06	4.63E-06	6.00E-05		3.25E-02	7.72E-02
HEPTACHLOR	2.81E-07	3.50E-07	4.50E+00		1.27E-06	1.57E-06	6.57E-07	8.16E-07	5.00E-04		1.31E-03	1.63E-03
HEPTACHLOR EPOXIDE	2.81E-07	3.50E-07	9.10E+00		2.56E-06	3.18E-06	6.57E-07	8.16E-07	1.30E-05		5.05E-02	6.28E-02
HEXACHLOROBENZENE	1.29E-06	2.74E-06	1.60E+00		2.07E-06	4.38E-06	3.02E-06	6.38E-06	8.00E-04		3.77E-03	7.98E-03
LINDANE (GAMMA-BHC)	2.38E-07	3.22E-07	1.30E+00		3.10E-07	4.18E-07	5.56E-07	7.51E-07	3.00E-04		1.85E-03	2.50E-03
MIREX	2.73E-07	3.50E-07	1.80E+00		4.92E-07	6.30E-07	6.38E-07	8.16E-07	2.00E-04		3.19E-03	4.08E03
TRANS-NONACHLOR	1.68E-06	3.11E-06		ND	-	-	3.93E-06	7.26E-06		ND	_	-
o,p'-DDD	6.93E-07	1.06E-06	1	ND	-	_	1.62E-06	2.48E-06		ND	_	-
o,p'-DDE	3.60E-07	7.18E-07		ND	_	_	8.41E-07	1.68E-06		ND	-	_
o,p'-DDT	8.68E-07	1.93E-06		ND	-	-1	2.03E-08	4.51E-06		ND		-
p.p'-DDD	3.20E-06	6.44E-06	2.40E-01		7.68E-07	1.55E-06	7.47E-06	1.50E-05		ND	_	-
p,p'-DDE	9.77E-06	2.20E-05	3.40E-01		3.32E-06	7.48E-06	2.28E-05	5.13E-05		ND		_
p,p'-DDT	1.31E-06	1.87E-06	3.40E-01		4.46E-07	6.37E-07	3.06E-06	4.37E-06	5.00E-04		6.12E-03	8.74E-03
POLYCHLORINATED BIPHENYLS (PCBs)	V 24											
TOTAL PCBs (AROCHLOR)	9.45E-05	1.86E-04	7.70E+00		7.28E-04	1.43E-03	2.21E-04	4.35E-04		ND	-	-
			1 - 17 3 7 5 1.33	1997	AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	DGENIC RISK:						CUMULATIVI HAZARD QUO		NOGENIC		2.63E+01	3.13E+01

TABLE 5-36
POTENTIAL RISKS CALCULATED FOR CONSUMPTION OF FLOUNDER FILLET CAUGHT AT YORK HARBOR SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES OFF-SITE, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	1000		CARCING	OGEN	IC RISKS			NO	NCARCINOGENIC I	RISKS	
	CHRO DAIL' INTAK (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RID.	CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)	AVG	MAX
PESTICIDES											
ALPHA-CHLORDANE	9.10E-07	9.10E-07	1.30E+00		1.18E-06 *	1.18E-06	2.12E-06	2.12E-06	6.00E-05	3.54E-02 *	3.54E-02
TRANS-NONACHLOR	4.43E-07	4.43E-07		ND	- 1	-	1.03E-06	1.03E-06	ND	_	_
p,p'-DDD	8.16E-07	8.16E-07	2.40E-01		1.96E-07 *	1.96E-07	1.91E-06	1.91E-06	ND	_	-
p.p'-DDE	1.84E-06	1.84E-06	3.40E-01		6.27E-07 *	6.27E-07	4.30E-06	4.30E-06	ND	_	_
POLYCHLORINATED BIPHENYLS (PCBs)											
TOTAL PCBs (AROCHLOR)	3.15E-05	3.30E-05	7.70E+00		2.43E-04	2.54E-04	7.38E-05	7.70E-05	ND	-	-
			· · · · · · · · · · · · · · · · · · ·	*	AVG	MAX		······································		AVG	MAX
CUMULATIVE CARCINOGENIC RISK:		2.45E-04	2.56E-04	CUMULATIV		NOGENIC	3.54E-02	3.54E-02			

ND: NO DATA AVAILABLE

*: AVERAGE CONCENTRATION EQUALS MAXIMUM CONCENTRATION; BASED ON A SINGLE SAMPLE

TABLE 5-37
POTENTIAL RISKS CALCULATED FOR INGESTION OF SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GEN	C RISKS			NC	NCARCINOG	ENIC	RISKS	
	CHRO DAIL INTAI (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAI SPECIFIC RISK	T	CHRO DAILY INTAK (mg/kg/k	(Œ	RiD		CHEMICAL SPECIFIC HAZARD QUOTIENT	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	3.95E-04	9.15E-04		ND	-	-	9.22E-04	2.13E-03	2.90E+00	1	3.18E-04	7.36E-04
ARSENIC	1.44E-07	3.37E-07	1.75E+00		2.53E-07	5.90E-07	3.37E-07	7.86E-07	3.00E-04		1.12E-03	2.62E-03
CADMIUM	6.80E-09	2.35E-08		ND	_	-	1.59E-08	5.48E-08	1.00E-03	1	1.59E-05	5.48E-05
CHROMIUM	1.28E-06	2.48E-06		ND	_		2.99E-06	5.78E-06	5.00E-03		5.97E-04	1.16E-03
COPPER	5.08E-07	1.23E-06		ND	-	_	1.19E-06	2.88E-06	3.70E-02		3.20E-05	7.77E-05
IRON	2.89E-04	5.91E-04		ND	_	_	6.75E04	1.38E-03		ND	-	
LEAD	7.44E-07	1.46E-06		ND	-	-	1.74E~06	3.40E-06		ND	-	_
MANGANESE	3.58E-06	6.36E-06		ND	-	-	8.36E-06	1.48E-05	1.00E-01		8.36E-05	1.48E-04
MERCURY	2.64E-09	7.87E-09		ND	-	-	. 6.16E-09	1.84E-08	3.00E-04		2.05E-05	6.12E-05
NICKEL	3.28E-07	1.07E-06		ND	1	-	7.65E-07	2.50E-06	2.00E-02		3.82E-05	1.25E-04
SILVER	6.96E-09	1.53E-08		ND	1		1.62E-08	3.56E-08	5.00E-03		3.25E-06	7.12E-06
ZINC	1.48E-06	6.22E-06		ND	•	_	3.46E-06	1.45E-05	2.00E-01		1.73E-05	7.26E-05
PESTICIDES												
ALDRIN	1.97E-11	2.63E-10	1.70E+01		3.35E-10	4.47E-09	4.59E-11	6.14E-10	3.00E-05		1.53E-06	2.05E-05
ALPHA-CHLORDANE	8.05E-12	3.43E-11	1.30E+00		1.05E-11	4.46E-11	1.88E-11	8.00E-11	6.00E-05		3.13E-07	1.33E-06
HEXACHLOROBENZENE	7.07E-12	8.45E-11	1.60E+00		1.13E-11	1.35E-10	1.65E-11	1.97E-10	8.00E-04		2.06E-08	2.47E-07
LINDANE (GAMMA-BHC)	4.77E-12	1.25E-11	1.30E+00		6.20E-12	1.62E-11	1.11E-11	2.92E-11	3.00E-04		3.71E-08	9.72E-08
MIREX	5.24E-12	2.00E-11	1.80E+00		9.43E-12	3.59E-11	1.22E-11	4.66E-11	2.00E-04		6.11E-08	2.33E-07
TRANS-NONACHLOR	4.57E-12	1.73E-11		ND	-	_	1.07E-11	4.04E-11		ND	-	-
o,p'-DDD	1.36E-11	4.36E-11		ND	-	-	3.17E-11	1.02E-10		ND	-	_
o,p'-DDE	8.78E-12	2.62E-11		ND	-		2.05E-11	6.11E-11		ND	_	_
o,p'-DDT	1.22E-11	1.12E-10		ND	-	_	2.84E-11	2.60E-10		ND	-	
p,p'-DDD	5.16E-11	2.24E-10	2.40E-01		1.24E-11	5.38E-11	1.20E-10	5.23E-10		ND	-	-
p,p'-DDE	2.72E-11	7.51E-11	3.40E-01		9.24E-12	2.55E-11	6.34E-11	1.75E-10		ND		-
p,p'-DDT	1.48E-10	1.40E-09	3.40E-01		5.05E-11	4.77E-10	3.46E-10	3.28E-09	5.00E-04		6.93E-07	6.55E-06

TABLE 5-37
POTENTIAL RISKS CALCULATED FOR INGESTION OF SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GEN	C RISKS			NC	NCARCINOGE	ENIC	RISKS	
	CHRO DAIL INTAK (mg/kg/	r Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/d	E	RfD		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	2.83E-09	2.23E-08		ND	_	-	6.61E-09	5.21E-08	3.00E-01		2.20E-08	1.74E-07
BENZO(A)ANTHRACENE	5.65E-09	4.23E-08	5.80E+00		3.28E-08	2.45E-07	1.32E-08	9.86E-08		ND	-	-
BENZO(A)PYRENE	5.66E-09	2.70E-08	5.80E+00		3.28E-08	1.57E-07	1.32E-08	6.30E-08		ND	. <u>–</u>	_
BENZO(E)PYRENE	4.11E-09	1,76E-08		ND	_	-	9.60E-09	4.11E-08		ND	_	_
BENZO(G,H,I)PERYLENE	2.29E-09	7.75E-09		ND	-	_	5.34E09	1.81E-08	4.00E-03		1.33E-06	4.52E-06
CHRYSENE	5.71E-09	3.76E-08	5.80E+00		3.31E-08	2.18E-07	1.33E-08	8.77E-08		ND	_	_
DIBENZO(A,H)ANTHRACENE	6.70E-10	2.82E-09	5.80E+00		3.89E-09	1.63E-08	1.56E-09	6.58E-09		ND	-	_
FLUORANTHENE	1.34E-08	1.64E-07		ND	-	-	3.12E-08	3.84E-07	4.00E-02		7.81E-07	9.59E-08
FLUORENE	8.99E-10	1.29E-08		ND	-	-	2.10E-09	3.01E-08	4.00E-02		5.25E-08	7.53E-07
INDENO(1,2,3-CD)PYRENE	2.53E-09	1.12E-08	5.80E+00		1.47E-08	6.47E-08	5.90E-09	2.60E-08		ND		
PERYLENE	1.83E-09	1.01E-08		ND	-	-	4.28E-09	2.36E-08		ND	_	-
PHENANTHRENE	7.36E-09	7.28E-08		ND	<u>-</u>	_	1.72E-08	1.70E-07	4.00E-03		4.29E-06	4.25E-05
PYRENE	1.15E-08	1.17E-07		ND	-	_	2.68E-08	2.74E-07	3.00E-02		8.93E-07	9.13E-06
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	7.87E-10	4.08E-09	7.70E+00		6.06E-09	3.14E-08	1.84E-09	9.53E-09		ND	_	_
					AVG	MAX	Light of Frager 1.	e e Praise.			AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	AULATIVE CARCINOGENIC RISK:				3.76E-07	1.33E-06	CUMULATIVE HAZARD QUE		NOGENIC		2.26E-03	5.16E-03

TABLE 5-38
POTENTIAL RISKS CALCULATED FOR INGESTION OF SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR CURRENT CONDITIONS RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

ar and a second		CARCING	OGEN	C RISKS			NC	NCARCINOG	ENIC F	RISKS	
DAIL INTA	Y Kie	ORAL SLOPE FACTOR				DAILY INTAK	E	RfD		SPECIFIC HAZARD	
AVG	MAX	(mg/kg/day)	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
								, ,			
2.74E-04	3.10E-04		ND	_	-	7.68E-04	8.68E-04	2.90E+00		2.65F-04	2.99E-04
5.92E-08	1.27E-07	1.75E+00		1.04E-07	2.23E-07	1.66E-07	3.56E-07	3.00E-04	 -		1.19E-03
1.96E-09	2.64E-09		ND	-		5.48E-09	7.40E-09	1.00E-03	†		7.40E-06
5.70E-07	9.77E-07		ND	-		1.60E-06	2.73E-06				5.47E-04
7.86E-08	2.19E-07		ND		-	2.20E-07			 		1.66E-05
1.38E-04	2.23E-04		ND		_	3.88E-04			ND		1.002-05
2.67E-07	6.06E-07		ND			7.48E-07			· · · · ·	_	
2.05E-06	2.99E-06		ND		 	5.74E-06		1.00F-01		5.74F-05	8.38E-05
1.34E-07	2.12E-07		ND			3.76E-07					2.97E-05
4.00E-09	8.71E-09		ND			1.12E-08					4.88E-06
4.84E-07	8.02E-07		ND						1		1.12E-05
								2.002 01		0.70L-00	1.121-03
3.44E-12	6.69E-12	1.70E+01		5.86E-11	1.14E-10	9.64E-12	1.87F-11	3.00E-05		3 21E_07	6.25E-07
6.04E-12	9.60E-12	1.30E+00									4.48E-07
5.35E-12	8.00E-12		ND					0.00L-05	ND		4.466-07
2.18E-12		·									<u>-</u>
		2 40F-01			8 19F_12				H		<u> </u>
			\vdash		 			·			·
								5.00E 04	מא	0.075.07	6.46E-07
	DAIL INTAK (mg/kg/AVG 2.74E-04 5.92E-08 1.96E-09 5.70E-07 7.86E-08 1.38E-04 2.67E-07 2.05E-06 1.34E-07 4.00E-09 4.84E-07 3.44E-12 6.04E-12	2.74E-04 3.10E-04 5.92E-08 1.27E-07 1.96E-09 2.64E-09 5.70E-07 9.77E-07 7.86E-08 2.19E-07 1.38E-04 2.23E-04 2.67E-07 6.06E-07 2.05E-06 2.99E-06 1.34E-07 2.12E-07 4.00E-09 8.71E-09 4.84E-07 8.02E-07 3.44E-12 6.69E-12 6.04E-12 9.60E-12 5.35E-12 8.00E-12 2.18E-12 3.00E-12 1.23E-11 3.41E-11 7.20E-12 2.15E-11	CHRONIC DAILY INTAKE: (mg/kg/day) 2.74E-04 5.92E-08 1.27E-07 1.96E-09 5.70E-07 7.86E-08 2.19E-07 1.38E-04 2.23E-04 2.67E-07 6.06E-07 2.05E-06 1.34E-07 2.12E-07 4.00E-09 8.71E-09 4.84E-07 8.02E-07 3.44E-12 6.69E-12 1.30E+00 5.35E-12 8.00E-12 1.23E-11 3.41E-11 2.40E-01 7.20E-12 2.15E-11 3.40E-01	CHRONIC DAILY INTAKE: (mg/kg/day) ORAL SLOPE FACTOR (mg/kg/day)-1 AVG MAX (mg/kg/day)-1 2.74E-04 3.10E-04 ND 5.92E-08 1.27E-07 1.75E+00 1.96E-09 2.64E-09 ND 5.70E-07 9.77E-07 ND 7.86E-08 2.19E-07 ND 1.38E-04 2.23E-04 ND 2.67E-07 6.06E-07 ND 2.05E-06 2.99E-06 ND 1.34E-07 2.12E-07 ND 4.00E-09 8.71E-09 ND 4.84E-07 8.02E-07 ND 3.44E-12 6.69E-12 1.70E+01 6.04E-12 9.60E-12 1.30E+00 5.35E-12 8.00E-12 ND 2.18E-12 3.00E-12 ND 1.23E-11 3.41E-11 2.40E-01 7.20E-12 2.15E-11 3.40E-01	DAILY INTAKE: (mg/kg/day) CHEMICAI SLOPE SPECIFIC SPECIFIC RISK AVG MAX (mg/kg/day)-1 AVG 2.74E-04 3.10E-04 ND - 5.92E-08 1.27E-07 1.75E+00 1.04E-07 1.96E-09 2.64E-09 ND - 5.70E-07 9.77E-07 ND - 7.86E-08 2.19E-07 ND - 1.38E-04 2.23E-04 ND - 2.67E-07 6.06E-07 ND - 2.05E-06 2.99E-06 ND - 1.34E-07 2.12E-07 ND - 4.00E-09 8.71E-09 ND - 4.84E-07 8.02E-07 ND - 3.44E-12 6.69E-12 1.70E+01 5.86E-11 6.04E-12 9.60E-12 1.30E+00 7.85E-12 5.35E-12 8.00E-12 ND - 2.18E-12 3.00E-12 ND - 1.23E-11 3.41E-11 2.40E-01 2	CHRONIC DAILY INTAKE (mg/kg/day) AVG MAX 2.74E-04 3.10E-04 1.27E-07 1.96E-09 2.64E-09 ND - 5.70E-07 9.77E-07 ND - 1.38E-04 2.23E-04 ND - 2.67E-07 6.06E-07 ND - 2.05E-08 2.99E-06 ND - 1.34E-07 2.12E-07 ND - 3.44E-07 8.02E-07 ND - 4.00E-09 8.71E-09 ND - 3.44E-12 6.69E-12 1.70E+01 5.35E-12 8.00E-12 1.30E+00 1.40E-01 2.95E-12 1.25E-11 5.35E-12 3.00E-12 ND - 1.23E-11 3.41E-11 2.40E-01 2.95E-12 8.19E-12 7.20E-12 2.15E-11 3.40E-01 2.95E-12 8.19E-12 7.30E-12 8.19E-12 7.30E-12 7.30E-12 8.19E-12 7.30E-12 7.30E-12 8.19E-12 7.30E-12	CHRONIC DAILY INTAKE: SLOPE FACTOR (mg/kg/day) CHEMICAL SPECIFIC INTAK (mg/kg/day) CHEMICAL SPECIFIC INTAK (mg/kg/day) AVG MAX MAX AVG MAX AVG 2.74E-04 3.10E-04 ND - - 7.68E-04 5.92E-08 1.27E-07 1.75E+00 1.04E-07 2.23E-07 1.66E-07 1.96E-09 2.64E-09 ND - - 5.48E-09 5.70E-07 9.77E-07 ND - - 1.60E-06 7.86E-08 2.19E-07 ND - - 2.20E-07 1.38E-04 2.23E-04 ND - - 3.88E-04 2.67E-07 6.06E-07 ND - - 7.48E-07 2.05E-08 2.99E-06 ND - - 5.74E-06 1.34E-07 2.12E-07 ND - - 1.12E-08 4.84E-07 8.02E-07 ND - - 1.36E-06 3.44E-12 6.69E-12 1.30E+01 5.86	CHRONIC DAILY INTAKE CHRONIC DAILY INTAKE CHEMICAL SPECIFIC RISK CHRONIC DAILY INTAKE (mg/kg/day) AVG MAX AVG MAX AVG MAX AVG MAX 2.74E-04 3.10E-04 ND - - - 7.68E-04 8.68E-04 5.92E-08 1.27E-07 1.75E+00 1.04E-07 2.23E-07 1.66E-07 3.56E-07 1.98E-09 2.64E-09 ND - - 5.48E-09 7.40E-09 5.70E-07 9.77E-07 ND - - 1.60E-06 2.73E-06 7.88E-08 2.19E-07 ND - - 2.20E-07 6.14E-07 1.38E-04 2.23E-04 ND - - 3.88E-04 6.25E-04 2.05E-06 2.99E-06 ND - - 5.74E-06 8.38E-08 1.34E-07 2.12E-07 ND - - 5.74E-06 8.38E-06 4.84E-07	CHRONIC DAILY INTAKE (mg/kg/day) CHEMICAL SLOPE FACTOR (mg/kg/day) CHEMICAL SPECIFIC DAILY INTAKE (mg/kg/day) CHRONIC DAILY INTAKE (mg/kg/day) RRD AVG MAX AVG MAX AVG MAX RRD RRD RRD CMG/kg/day) RRD RRD CMG/kg/day) RRD RRD CMG/kg/day) RRD RRD CMG/kg/day) CMG/kg/day) RRD CMG/kg/day) CMG/kg/day) CMG/kg/day) CMG/kg/day) CMG/kg/day) CMG/kg/day} CMG/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/kg/	CHRONIC DAILY INTAKE (mg/kg/day) ORAL SLOPE FACTOR (mg/kg/day)-1 CHEMICAL SPECIFIC RISK CHRONIC DAILY INTAKE (mg/kg/day) RfD (mg/kg/day) 2.74E-04 3.10E-04 3.10E-04 ND — — 7.68E-04 4.86E-07 8.68E-04 3.56E-07 2.90E+00 3.00E-04 5.92E-08 1.27E-07 1.75E+00 1.04E-07 2.23E-07 1.66E-07 3.56E-07 3.00E-04 1.96E-09 2.64E-09 ND — — 5.48E-09 7.40E-09 1.00E-03 5.70E-07 9.77E-07 ND — — 1.60E-00 2.73E-06 5.00E-03 7.86E-08 2.19E-07 ND — — 1.60E-00 2.73E-06 5.00E-03 1.38E-04 2.23E-04 ND — — 7.48E-07 3.70E-02 1.38E-04 2.29E-06 ND — — 7.48E-07 1.70E-08 ND 2.05E-08 2.99E-06 ND — — 5.74E-06 8.38E-06 1.00E-01 1.34E-07 2.12E-07 ND — —	CHRONIC DAILY DAILY INTAKE CHEMICAL DAILY DAILY INTAKE CHEMICAL SPECIFIC DAILY INTAKE (mg/kg/day) CHEMICAL SPECIFIC DAILY INTAKE (mg/kg/day) CHEMICAL SPECIFIC DAILY INTAKE (mg/kg/day) CHEMICAL SPECIFIC HAZARD QUOTIEN AVG MAX AVG MAX MMAX AVG MAX AVG AVG AVG AVG

TABLE 5-38
POTENTIAL RISKS CALCULATED FOR INGESTION OF SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR CURRENT CONDITIONS RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	in experience		CARCING	GEN	C RISKS	tea di La		NC	NCARCINOGE	ENIC F	ISKS	
	CHRO DAIL' INTAK (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICA SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIENT	Çerê e di di di di di G
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	1.90E-09	3.91E-09		ND	-	_	5.32E-09	1.10E-08	3.00E01		1.77E-08	3.65E-08
BENZO(A)ANTHRACENE	3.47E-09	6.65E-09	5.80E+00		2.01E-08	3.86E-08	9.72E-09	1.86E-08		ND	_	
BENZO(A)PYRENE	3.68E-09	6.85E-09	5.80E+00	1	2.13E-08	3.97E-08	1.03E-08	1.92E-08		ND		
BENZO(E)PYRENE	2.37E-09	4.70E-09		ND	_	_	6.64E-09	1.32E-08		ND	_	
BENZO(G,H,I)PERYLENE	1.41E-09	2.84E-09		ND		_	3.96E-09	7.95E-09	4.00E-03	1	9.90E-07	1.99E-06
CHRYSENE	3.30E-09	6.16E-09	5.80E+00		1.91E-08	3.58E-08	9.23E-09	1.73E-08		ND	-	
DIBENZO(A,H)ANTHRACENE	5.55E-10	1.17E-09	5.80E+00		3.22E-09	6.81E-09	1.55E-09	3.29E-09		ND		
FLUORANTHENE	6.47E-09	1.17E-08		ND	_	-	1.81E-08	3.29E-08	4.00E-02		4.53E-07	8.22E-07
FLUORENE	3.74E-10	8.02E-10		ND	_	_	1.05E-09	2.25E-09	4.00E-02		2.62E-08	5.62E-08
INDENO(1,2,3-CD)PYRENE	1.81E-09	3.72E-09	5.80E+00		1.05E-08	2.16E-08	5.06E-09	1.04E-08		ND		_
PERYLENE	1.01E-09	1.96E-09		ND	-	-	2.82E-09	5.48E-09		ND	- 1	
PHENANTHRENE	3.39E-09	6.26E-09		ND	_	_	9.48E-09	1.75E-08	4.00E-03		2.37E-06	4.38E-06
PYRENE	5.91E-09	1.08E-08		ND	-	_	1.66E-08	3.01E-08	3.00E-02		5.52E-07	1.00E-06
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	5.33E-10	1.31E-09	7.70E+00		4.11E-09	1.01E-08	1.49E-09	3.66E-09		ND	-	-
					AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					1.82E-07	3.75E-07	CUMULATIV		NOGENIC		1.24E-03	2.20E-03

TABLE 5-39
POTENTIAL RISKS CALCULATED FOR INGESTION OF SEDIMENT FROM AROUND SEAVEY ISLAND FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NO	NCARCINOGE	ENIC F	IISKS	
	CHRO DAIL INTAI (mg/kg/	Y KE	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRO DAILY INTAK (mg/kg/c		RfD		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	3.19E-04	4.77E-04		ND	-	-	8.94E-04	1.34E-03	2.90E+00		3.08E-04	4.61E-04
ARSENIC	1.07E-07	1.74E-07	1.75E+00		1.88E-07	3.05E-07	3.01E-07	4.88E-07	3.00E-04		1.00E-03	1.63E-03
CADMIUM	5.22E-09	1.96E-08		ND	-	-	1.46E-08	5.48E-08	1.00E-03		1.46E-05	5.48E-05
CHROMIUM	8.63E-07	1.48E-06		ND	-	•	2.42E-06	4.14E-06	5.00E-03		4.83E-04	8.27E-04
COPPER	4.61E-07	1.03E-06		ND	-	-	1.29E-06	2.88E-06	3.70E-02		3.49E-05	7.77E-05
IRON	2.31E-04	4.92E-04		ND	-	-	6.47E-04	1.38E-03		ND	-	-
LEAD	6.93E-07	1.21E-06		ND	-	-	1.94E-06	3.40E-06		ND	_	-
MANGANESE	3.02E-06	4.12E-06		ND	_	-	8.46E-06	1.15E-05	1.00E-01		8.46E-05	1.15E-04
MERCURY	2.10E-09	6.56E-09		ND	-	-	5.87E-09	1.84E-08	3.00E-04		1.96E-05	6.12E-05
NICKEL	2.74E-07	8.92E-07		ND	-	-	7.69E-07	2.50E-06	2.00E-02		3.84E-05	1.25E-04
SILVER	4.51E-09	7.24E-09		ND		- 1	1.26E-08	2.03E-08	5.00E-03		2.53E-06	4.05E-06
ZINC	1.36E-06	5.19E-06]	ND	-	-	3.82E-06	1.45E-05	2.00E-01		1.91E-05	7.26E-05
PESTICIDES												
ALDRIN	2.73E-11	2.19E-10	1.70E+01		4.65E-10	3.73E-09	7.66E-11	6.14E-10	3.00E-05		2.55E-06	2.05E-05
ALPHA-CHLORDANE	6.65E-12	2.86E-11	1.30E+00		8.65E-12	3.72E-11	1.86E-11	8.00E-11	6.00E-05		3.11E-07	1.33E-06
HEXACHLOROBENZENE	3.25E-12	8.43E-12	1.60E+00		5.20E-12	1.35E-11	9.10E-12	2.36E-11	8.00E-04		1.14E-08	2.95E-08
LINDANE (GAMMA-BHC)	4.49E-12	1.04E-11	1.30E+00		5.84E-12	1.35E-11	1.26E-11	2.92E-11	3.00E-04		4.19E-08	9.72E-08
MIREX	3.79E-12	1.17E-11	1.80E+00		6.82E-12	2.11E-11	1.06E-11	3.29E-11	2.00E-04		5.30E-08	1.64E-07
TRANS-NONACHLOR	3.34E-12	1.44E-11		ND	-	_	9.34E-12	4.04E-11		ND		-
o.p'-DDD	7.81E-12	3.64E-11		ND	-	-	2.19E-11	1.02E-10		ND	-	_
o,p'-DDE	5.70E-12	2.18E-11		ND	_		1.60E-11	6.11E-11		ND		
o.p'-DDT	1.12E-11	9.30E-11		ND		_	3.12E-11	2.60E-10		ND	-	
p,p'-DDD	2.96E-11	1.87E-10	2.40E-01		7.11E-12	4.48E-11	8.29E-11	5.23E-10		ND	-	_
p,p'-DDE	1.82E-11	5.27E-11	3.40E-01		6.17E-12	1.79E-11	5.08E-11	1.48E-10		ND		_
p,p'-DDT	1.84E-10	1.17E-09	3.40E-01		6.24E-11	3.98E-10	5.14E-10	3.28E-09	5.00E-04		1.03E-06	6.55E-06

TABLE 5-39
POTENTIAL RISKS CALCULATED FOR INGESTION OF SEDIMENT FROM AROUND SEAVEY ISLAND FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NO	NCARCINOGI	ENIC F	RISKS	
	CHRO DAIL	1	ORAL		CHEMICA	_	CHROI	7 . :			CHEMICA SPECIFIC	- }
	INTAK		SLOPE		SPECIFIC		INTAK	H A COLLEGE	i kalendin .		HAZARD	
	(mg/kg/		FACTOR		RISK		(mg/kg/c		RfD		QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS			,									
ANTHRACENE	3.14E-09	1.86E-08		ND	_	-	8.78E-09	5.21E-08	3.00E-01		2.93E-08	1.74E-07
BENZO(A)ANTHRACENE	5.98E-09	3.52E-08	5.80E+00		3.47E-08	2.04E-07	1.67E-08	9.86E-08		ND		_
BENZO(A)PYRENE	5.49E-09	2.15E-08	5.80E+00		3.19E-08	1.25E-07	1.54E-08	6.03E-08		ND	-	_
BENZO(E)PYRENE	3.99E-09	1.47E-08		ND	_	_	1.12E-08	4.11E-08		ND	_	_
BENZO(G,H,I)PERYLENE	2.05E-09	5.38E-09		ND	_	-	5.75E-09	1.51E-08	4.00E-03		1.44E-06	3.77E-06
CHRYSENE	5.96E-09	3.13E-08	5.80E+00		3.45E-08	1.82E-07	1.67E-08	8.77E-08		ND	-	_
DIBENZO(A,H)ANTHRACENE	6.14E-10	2.35E-09	5.80E+00		3.56E-09	1.36E-08	1.72E-09	6.58E-09	-	ND	-	-
FLUORANTHENE	1.55E-08	1.37E-07		ND	+	_	4.35E-08	3.84E-07	4.00E-02		1.09E-06	9.59E-06
FLUORENE	9.25E-10	6.60E-09		ND	-	-	2.59E-09	1.85E-08	4.00E-02		6.47E-08	4.62E-07
INDENO(1,2,3-CD)PYRENE	2.22E-09	6.75E-09	5.80E+00		1.29E-08	3.92E-08	6.22E-09	1.89E-08		ND	-	-
PERYLENE	1.81E-09	8.41E-09		ND		-	5.06E-09	2.36E-08		ND	-	_
PHENANTHRENE	8.27E-09	6.07E-08		ND	-	-	2.31E-08	1.70E-07	4.00E-03		5.79E-06	4.25E-05
PYRENE	1.28E-08	9.78E-08		ND	-	-	3.59E-08	2.74E-07	3.00E-02		1.20E-06	9.13E-06
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	5.84E-10	3.40E-09	7.70E+00		4.49E-09	2.62E-08	1.63E-09	9.53E-09		ND	-	-
					AVG	MAX	7.5 (2.11)		. 4		AVG	MAX
CUMULATIVE CARCINOGENIC RISK:	UMULATIVE CARCINOGENIC RISK:							E NONCARCI OTIENT:	NOGENIC		2.02E-03	3.52E-03

TABLE 5-40
POTENTIAL RISKS CALCULATED FOR INGESTION OF SEDIMENT FROM CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

		. A	CARCING	GENI	C RISKS	audispa sudatu	STRAIN.	NC	NCARCINOGE	ENIC F	RISKS	ve d
	CHRO DAIL' INTAI (mg/kg/	Y.	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	E	CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)	1.17	AVG	MAX
INORGANICS												
ALUMINUM	3.67E-04	7.62E-04		ND	_	_	1.03E-03	2.13E-03	2.90E+00]	3.54E-04	7.36E-04
ARSENIC	1.55E-07	2.81E-07	1.75E+00		2.72E-07	4.91E-07	4.35E-07	7.86E-07	3.00E-04		1.45E-03	2.62E-03
CADMIUM	7.37E-09	1.08E-08		ND	_	-	2.06E-08	3.01E-08	1.00E-03		2.08E~05	3.01E-05
CHROMIUM	1.47E-06	2.06E-06		ND	-	-	4.11E-06	5.78E-06	5.00E-03		8.22E-04	1.16E-03
COPPER	4.84E-07	9.04E-07		ND	-	_	1.36E-06	2.53E-06	3.70E-02		3.66E-05	6.84E-05
IRON	2.87E-04	3.91E-04		ND	-	-	8.03E-04	1.10E-03		ND	-	_
LEAD	6.43E-07	1.02E-06		ND		-	1.80E-06	2.85E-06		ND	-	-
MANGANESE	3.23E06	5.30E-06		ND	_	-	9.05E-06	1.48E-05	1.00E-01		9.05E-05	1.48E-04
MERCURY	2.50E-09	6.56E-09		ND		-	· 6.99E-09	1.84E-08	3.00E-04		2.33E-05	6.12E-05
NICKEL	3.15E-07	4.35E-07		ND	-	_	8.83E-07	1.22E-06	2.00E-02		4.41E-05	6.10E-05
SILVER	7.81E-09	1.27E-08		ND	_	-	2.19E-08	3.56E-08	5.00E-03		4.37E-06	7.12E-06
ZINC	1.33E-06	2.02E-06		ND	-	-	3.71E-06	5.64E-06	2.00E-01		1.86E-05	2.82E-05
PESTICIDES												
ALDRIN	6.14E-12	1.76E-11	1.70E+01		1.04E-10	2.99E-10	1.72E-11	4.93E-11	3.00E-05		5.73E-07	1.64E-06
ALPHA-CHLORDANE	7.02E-12	2.32E-11	1.30E+00		9.12E-12	3.01E-11	1.96E-11	6.48E-11	6.00E-05		3.27E-07	1.08E-06
HEPTACLOR EPOXIDE	3.39E-12	8.81E-12	9.10E+00		3.08E-11	8.01E-11	9.48E-12	2.47E-11	1.30E-05		7.29E-07	1.90E-06
HEXACHLOROBENZENE	1.10E-11	7.05E-11	1.60E+00		1.76E-11	1.13E-10	3.08E-11	1.97E-10	8.00E-04		3.85E-08	2.47E-07
LINDANE (GAMMA-BHC)	3.75E-12	7.71E-12	1.30E+00		4.87E-12	1.00E-11	1.05E-11	2.16E-11	3.00E-04		3.50E-08	7.20E-08
MIREX	5.61E-12	1.66E-11	1.80E+00		1.01E-11	2.99E-11	1.57E-11	4.66E-11	2.00E-04		7.85E-08	2.33E-07
TRANS-NONACHLOR	5.12E-12	1.21E-11		ND	_	- 1	1.43E-11	3.38E-11		ND	_	_
o,p'DDD	1.80E-11	2.84E-11		ND	_	_	5.04E-11	7.95E-11		ND	_	
o,p'-DDE	1.12E-11	2.15E-11		ND		i	3.13E-11	6.03E-11		ND	_	
o,p'-DDT	1.14E-11	4.11E-11		ND	-	-	3.19E-11	1.15E-10		ND	-	
p,p'-DDD	7.10E-11	1.57E-10	2.40E-01		1.71E-11	3.76E-11	1.99E-10	4.38E-10		ND	-	-
p,p'-DDE	3.38E-11	6.26E-11	3.40E-01		1.15E-11	2.13E-11	9.46E-11	1.75E-10		ND	-	-
p,p'-DDT	5.05E-11	1.38E-10	3.40E-01		1.72E-11	4.69E-11	1.42E-10	3.87E-10	5.00E-04		2.83E-07	7.73E-07

TABLE 5-40
POTENTIAL RISKS CALCULATED FOR INGESTION OF SEDIMENT FROM CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NO	NCARCINOGE	ENIC F	IISKS	IV
	CHROI DAILY INTAK (mg/kg/c	E	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	February Control	CHRON DAILY INTAK (mg/kg/d	.	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	9.43E-10	1.86E-09		DN	-	-	2.64E-09	5.21E-09	3.00E-01		8.80E-09	1.74E-08
BENZO(A)ANTHRACENE	2.75E-09	4.40E-09	5.80E+00		1.59E-08	2.55E-08	7.70E-09	1.23E-08		ND	-	-
BENZO(A)PYRENE	3.24E-09	5.58E-09	5.80E+00		1.88E-08	3.23E-08	9.08E-09	1.56E-08		ND	-	-
BENZO(E)PYRENE	2.51E-09	4.11E-09		ND	-	-	7.03E-09	1.15E-08		ND	_	_
BENZO(G,H,I)PERYLENE	1.68E-09	3.72E-09	1	ND	_	_	4.70E-09	1.04E-08	4.00E-03		1.18E-06	2.60E-06
CHRYSENE	2.95E-09	5.09E-09	5.80E+00		1.71E-08	2.95E-08	8.27E-09	1.42E-08		ND	-	_
DIBENZO(A,H)ANTHRACENE	4.16E-10	8.22E-10	5.80E+00		2.41E-09	4.77E-09	1.17E-09	2.30E-09		ND	-	_
FLUORANTHENE	5.68E-09	9.78E-09		ND		-	1.59E-08	2.74E-08	4.00E-02		3.98E-07	6.85E-07
FLUORENE	3.09E-10	6.75E-10		ND	.	_	8.65E-10	1.89E-09	4.00E-02		2.16E-08	4.73E-08
INDENO(1,2,3-CD)PYRENE	1.73E-09	3.33E-09	5.80E+00		1.00E-08	1.93E08	4.83E-09	9.32E-09		מא		
PERYLENE	1.13E-09	1.66E-09		ND			3.17E-09	4.66E-09		ND		
PHENANTHRENE	2.91E-09	5.19E-09		ND	-	<u> </u>	8.14E-09	1.45E-08	4.00E-03		2.03E-06	3.63E-06
PYRENE	5.48E-09	9.20E-09		ND	-	<u> </u>	1.54E-08	2.58E-08	3.00E-02		5.12E-07	8.58E07
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	7.99E-10	1.86E-09	7.70E+00		6.15E-09	1.43E-08	2.24E-09	5.22E-09		ND	_	
					AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					3.42E-07	6.18E-07	CUMULATIV		NOGENIC		2.87E-03	4.93E-03

TABLE 5-41
POTENTIAL RISKS CALCULATED FOR INGESTION OF SEDIMENT FROM YORK HARBOR SAMPLE LOCATIONS FOR CURRENT CONDITIONS RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	GENI	C RISKS			NO	NCARCINOGE	ENIC F	RISKS	
	CHRO DAIL INTAI (mg/kg/	Y CE	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	, . E	RfD		CHEMICA SPECIFIC HAZARD QUOTIEN)
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	1.83E-04	2.03E-04		ND	-	-	5.12E-04	5.67E-04	2.90E+00		1.77E-04	1.96E-04
ARSENIC	7.19E-09	1.17E-08	1.75E+00		1.26E-08	2.05E-08	2.01E-08	3.29E-08	3.00E-04		6.71E-05	1.10E-04
CHROMIUM	2.73E-07	3.33E-07		ND	_	-	7.63E-07	9.32E-07	5.00E-03		1.53E-04	1.86E-04
COPPER	1.27E-08	1.57E-08		ND	-	-	3.55E-08	4.38E-08	3.70E-02		9.59E-07	1.18E-06
IRON	7.19E-05	9.05E-05		ND	_	-	2.01E-04	2.53E-04		ND		
LEAD	1.95E-07	2.47E-07		ND	_	-	5.45E-07	6.90E-07		ND		-
MANGANESE	1.02E-06	1.32E-06		ND		_	2.86E-06	3.70E-06	1.00E-01		2.86E-05	3.70E-05
NICKEL	9.10E-08	1.09E-07		ND	_	-	2.55E-07	3.04E-07	2.00E-02		1.27E-05	1.52E-05
ZINC	1.91E-07	2.12E-07		ND	_	-	5.34E-07	5.95E-07	2.00E-01		2.67E-06	2.97E-06
PESTICIDES												
ALDRIN	6.66E-12	7.05E-12	1.70E+01		1.13E-10	1.20E-10	1.87E-11	1.98E-11	3.00E-05		6.22E-07	6.58E-07
p,p'-DDT	5.85E-11	6.76E-11	3.40E-01		1.99E-11	2.30E-11	1.64E-10	1.89E-10	5.00E-04		3.28E-07	3.79E-07
POLYAROMATIC HYDROCARBONS								1				
ANTHRACENE	1.47E-10	1.66E-10		ND	_	-	4.11E-10	4.66E-10	3.00E-01		1.37E-09	1.55E-09
BENZO(A)ANTHRACENE	4.35E-10	6.36E-10	5.80E+00		2.53E-09	3.69E-09	1.22E-09	1.78E-09		ND	-	
BENZO(A)PYRENE	5.43E-10	8.22E-10	5.80E+00		3.15E-09	4.77E-09	1.52E-09	2.30E-09		ND	_	
BENZO(E)PYRENE	3.82E-10	5.87E-10		ND	-		1.07E-09	1.64E-09		ND	_	_
BENZO(G,H,I)PERYLENE	2.40E-10	4.40E-10		ND		_	6.71E-10	1.23E-09	4.00E-03		1.68E-07	3.08E-07
CHRYSENE	4.94E-10	7.44E-10	5.80E+00		2.87E-09	4.31E-09	1.38E-09	2.08E-09		ND		
FLUORANTHENE	1.10E-09	1.47E-09		ND			3.07E-09	4.11E-09	4.00E-02		7.67E-08	1.03E-07
FLUORENE	5.38E-11	5.87E-11		ND	_		1.51E-10	1.64E-10	4.00E-02		3.77E-09	4.11E-09
INDENO(1,2,3-CD)PYRENE	3.08E-10	5.58E-10	5.80E+00		1.79E-09	3,23E-09	8.63E-10	1.56E-09		ND	-	
PERYLENE	1.37E-10	2.35E-10		ND			3.84E-10	6.58E-10		ND		
PHENANTHRENE	6.31E-10	7.24E-10		ND		_	1.77E-09	2.03E-09	4.00E-03		4.42E-07	5.07E-07
PYRENE	9.25E-10	1.27E-09		ND		-	2.59E-09	3.56E-09	3.00E-02		8.63E-08	1.19E-07
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	7.93E-11	1.01E-10	7.70E+00		6.10E-10	7.76E-10	2.22E-10	2.82E-10		ND		-
	······································		·		AVG	MAX				70.	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:							CUMULATIVE HAZARD QUO		NOGENIC		4.43E-04	5.50E-04

TABLE 5-42
POTENTIAL RISKS CALCULATED FOR DERMAL CONTACT WITH SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATONS FOR CURRENT CONDITIONS RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING AND WADING IN RIVER, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	OGENI	C RISKS			NC	NCARCINOG	ENIC F	RISKS	
	CHROI DAIL) INTAK (mg/kg/c	E	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRON DAILY INTAK (mg/kg/d	E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIENT	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS							To A ASSET TANDERS	1.75		ud ju vrteta r	lander fra Total og de digest fr	
CADMIUM	6.67E-10	2,30E-09		ND	_	-	1.56E-09	5.37E-09	5.00E-04	ļ	3.11E-06	1.07E-05
POLYCHLORINATED BIPHENYLS (PCBs)			L							1	0.1.72	
TOTAL PCBs (AROCHLOR)	4.60E-10	2.40E-09	7.70E+00		3.54E-09	1.85E-08	1.08E-09	5.60E-09		ND	-	
		- 4 II 1 I 4			AVG	MAX	178880				AVG	MAX
CUMULATIVE CARCINOGENIC RISK:				***	3.54E-09		CUMULATIVI HAZARD QU		INOGENIC		3.11E-06	1.07E-05

TABLE 5-43
POTENTIAL RISKS CALCULATED FOR DERMAL CONTACT WITH SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATONS EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR CURRENT CONDITIONS RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING AND WADING IN RIVER, OFF-SHORE IMPACTS PORTSMOUTH NAVAL SHIPYARD

		in and a si	CARCIN	OGEN	IC RISKS	San Maria da Cara da C		NC	NCARCINOG	ENIC	RISKS	A STATE OF THE STA
	CHRO DAIL INTAI (mg/kg/	KE Y	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	F1200	CHRO DAILY INTAK (mg/kg/c	E	RID		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	-1	AVG	MAX	AVG	MAX	(mg/kg/day	,	AVG	MAX
PESTICIDES												
ALDRIN	1.69E-12	3.28E-12	1.70E+01		2.87E-11	6.58E-11	4.73E-12	9.18E-12	3.00E-05	1	1.58E-07	3.06E-07
ALPHA-CHLORDANE	2.96E-12	4.70E-12	1.30E+00		3.85E-12	6.11E-12	8.28E-12	1.32E-11	6.00E-05	+-	1.38E-07	2.19E-07
o,p'-DDD	2.62E-12	3.92E-12		ND	-	-	7.34E-12	1.10E-11		ND		2.102 07
o,p'-DDE	1.07E-12	1.47E-12		ND		_	2.99E-12	4.12E-12		ND	 	
p,p'-DOD	6.02E-12	1.67E-11	2.40E-01		1.44E-12	4.01E-12	1.68E-11	4.68E-11		ND	 	
p,p'-DDE	3.53E-12	1.05E-11	3.40E-01	†	1.20E-12	3.57E-12	9.88E-12	2.94E-11		ND		
p,p'-DDT	3.38E-11	5.65E-11	3.40E-01	 	1.15E-11	1.92E-11	9.47E-11	1.58E-10	5.00E-04	 	1.89E-07	3.16E-07
POLYAROMATIC HYDROCARBONS	ende Congr								0.002 04		V.03E-07	3.102-07
ANTHRACENE	9.31E-09	1.92E-08		ND	_	_	2.61E-08	5.37E-08	3.00E-01	l	8.69E-08	1.79E-07
BENZO(A)ANTHRACENE	1.70E-08	3.26E-08	5.80E+00		9.86E-08	1.89E-07	4.76E-08	9.13E-08	0.002 01	ND	-	1.782-07
BENZO(A)PYRENE	1.80E-08	3.36E-08	5.80E+00		1.05E-07	1.95E-07	5.05E-08	9.40E-08		ND		<u>-</u>
BENZO(E)PYRENE	1.16E-08	2.30E-08		ND	_	7.552 57	3.25E-08	6.44E-08		ND		
BENZO(G,H,I)PERYLENE	6.93E-09	1.39E-08		ND			1.94E-08	3.89E-08	4.00E-03	IND.	4.85E-06	0.705.00
CHRYSENE	1.62E-08	3.02E-08	5.80E+00	<u> </u>	9.37E-08	1.75E-07	4.52E-08	8.46E-08	4.002-03	ND		9.73E-06
DIBENZO(A,H)ANTHRACENE	2.72E-09	5.75E-09	5.80E+00	ł	1.58E-08	3.34E-08	7.61E-09	1.61E-08		ND	<u> </u>	<u>-</u>
FLUORANTHENE	3.17E-08	5.75E-08		ND		0.012 05	8.88E-08	1.61E-07	4.00E-02	IND.	2.22E-06	4.03E-06
FLUORENE	1.83E-09	3.93E-09		ND	_	-	5.13E-09	1.10E-08	4.00E-02		1.28E-07	2.75E-07
INDENO(1,2,3-CD)PYRENE	8.85E-09	1.82E-08	5.80E+00		5.13E-08	1.06E-07	2.48E-08	5.10E-08	- 1.002 02	ND	1.202-07	2.732-07
PERYLENE	4.93E-09	9.59E-09		ND	_	_	1.38E-08	2.68E-08		ND		
PHENANTHRENE	1.68E-08	3.07E-08		ND	-	_	4.65E-08	8.59E-08	4.00E-03		1.16E-05	2.15E-05
PYRENE	2.90E-08	5.27E-08		ND	-	_	8.11E-08	1.48E-07	3.00E-02		2.70E-06	4.92E-06
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	2.61E-09	6.41E-09	7.70E+00		2.01E-08	4.93E-08	7.32E-09	1.79E-08		ND		
					AVG	MAX	Contract of the contract of th				AVG	MAX
MULATIVE CARCINOGENIC RISK:					3.84E-07		CUMULATIVE		NOGENIC		2.21E-05	4.15E-05

TABLE 5-44
POTENTIAL RISKS CALCULATED FOR DERMAL CONTACT WITH SEDIMENT FROM AROUND SEAVEY ISLAND FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING AND WADING, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCING	OGEN	IC RISKS		Litera A. A.	NC	NCARCINOG	ENIC	RISKS	
	CHRO DAIL' INTAI (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAI SPECIFIC RISK		CHRO DAILY INTAK (mg/kg/c	/ Œ	RíD		CHEMICA SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)	1	AVG	MAX
PESTICIDES	100 (100 mm) 100 (100 mm)						10000	- 100 Table 1981	,,,		<u>l y si ngaripakta</u> an 1,63000	200 2 00 3100 .
ALDRIN	1.34E-11	1.07E-10	1.70E+01		2.28E-10	1.83E-09	3.75E-11	3.01E-10	3.00E-05	Ī	1.25E-06	1.00E-05
ALPHA-CHLORDANE	3.26E+12	1.40E-11	1.30E+00		4.24E-12	1.82E-11	9.13E-12	3.92E-11	6.00E-05	1	1.52E-07	6.54E-07
HEXACHLOROBENZENE	1.59E-12	4.13E-12	1.60E+00		2.55E-12	6.61E-12	4.46E-12	1.16E-11	8.00E-04	1	5.57E-09	1.45E-08
LINDANE (GAMMA-BHC)	2.20E-12	5,10E-12	1.30E+00		2.86E-12	6.63E-12	6.16E-12	1.43E-11	3.00E-04		2.05E-08	4.76E-08
MIREX	1.86E-12	5.75E-12	1.80E+00		3.34E-12	1.04E-11	5.20E-12	1.61E-11	2.00E-04	1	2.60E-08	8.05E-08
TRANS-NONACHLOR	1.63E-12	7.08E-12		ND		-	4.58E-12	1.98E-11	_	ND	_	
o,p'-DDD	3.83E-12	1.78E-11		ND	-	-	1.07E-11	4.99E-11		ND		_
o,p'-DDE	2.80E-12	1.07E-11		ND	_		7.83E-12	2.99E-11		ND		
o,p'-DDT	5.47E-12	4.55E-11		ND	_	-	1.53E-11	1.28E-10		ND		
p,p'-DDD	1.45E-11	9.15E-11	2.40E-01	1	3.48E-12	2.20E-11	4.06E-11	2.56E-10		ND		
p,p'-DDE	8.90E-12	2.58E-11	3.40E-01		3.03E-12	8.79E-12	2.49E-11	7.24E-11		ND	_	
p.p'-DDT	9.00E-11	5.73E-10	3.40E-01	1	3.06E-11	1.95E-10	2.52E-10	1.61E-09	5.00E-04	<u> </u>	5.04E-07	3.21E-06
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	1.54E-08	9.11E-08		ND	_	_	4.30E-08	2.55E-07	3.00E-01		1.43E-07	8.50E07
BENZO(A)ANTHRACENE	2.93E-08	1.73E-07	5.80E+00		1.70E-07	1.00E-06	8,20E-08	4.83E-07		ND		
BENZO(A)PYRENE	2.69E-08	1.05E-07	5.80E+00		1.56E-07	6.12E-07	7.53E-08	2.95E-07		ND		
BENZO(E)PYRENE	1.95E-08	7.19E-08		ND	_	_	5.47E-08	2.01E-07		ND		
BENZO(G,H,I)PERYLENE	1.01E-08	2.64E-08		ND	_	_	2.82E-08	7.38E-08	4.00E-03	1	7.05E-06	1.85E-05
CHRYSENE	2.92E-08	1.53E-07	5.80E+00	1	1.69E-07	8.90E-07	8.17E-08	4.30E-07	4.002 00	ND	7.002 00	1.032-03
DIBENZO(A,H)ANTHRACENE	3.01E-09	1.15E-08	5.80E+00		1.74E-08	6.67E-08	8.42E-09	3.22E-08		ND		
FLUORANTHENE	7.61E08	6.71E-07		ND		-	2.13E-07	1.88E-06	4.00E-02		5.33E-06	4.70E-05
FLUORENE	4.53E-09	3.24E-08		ND	_	_	1.27E-08	9.06E-08	4.00E-02		3.17E-07	2.27E-06
INDENO(1,2,3-CD)PYRENE	1.09E-08	3.31E-08	5.80E+00		6.31E-08	1.92E-07	3.05E-08	9.26E-08		ND	-	
PERYLENE	8.85E-09	4.12E-08		ND		_	2.48E-08	1.15E-07		ND		
PHENANTHRENE	4.05E-08	2.97E-07		ND	-	- 1	1.13E-07	8.32E-07	4.00E-03		2.84E-05	2.08E-04
PYRENE	6.28E-08	4.79E-07		ND	_	-	1.76E-07	1.34E-06	3.00E-02		5.86E-06	4.47E-05
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	2.86E-09	1.67E-08	7.70E+00		2.20E-08	1.28E-07	8.01E-09	4.67E-08		ND	_	_
		a Ji, m Tu ()			AVG	MAX			1 .i		AVG	MAX
CUMULATIVE CARCINOGENIC RISK:		5.98E-07		CUMULATIVE HAZARD QUO		NOGENIC		4.90E-05	3.35E-04			

TABLE 5-45
POTENTIAL RISKS CALCULATED FOR DERMAL CONTACT WITH SEDIMENT FROM CLARK'S ISLAND EMBAYMENT SAMPLE LOCATIONS FOR CURRENT CONDITIONS
RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING AND WADING, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

		e de la serie de	CARCING	OGEN	IC RISKS	ait. San a san		NO.	NCARCINOGE	ENIC F	RISKS	Angle king
	CHRO DAILY INTAK (mg/kg/c	r KE	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICAI SPECIFIC HAZARD QUOTIEN	.
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
PESTICIDES		}										
ALDRIN	3.01E-12	8.63E-12	1.70E+01		5.11E-11	1.47E-10	8.42E-12	2.42E-11	3.00E-05		2.81E-07	8.05E-07
ALPHA-CHLORDANE	3.44E-12	1.13E-11	1.30E+00		4.47E-12	1.48E-11	9.63E-12	3.18E-11	6.00E-05		1.60E-07	5.30E-07
HEPTACLOR EPOXIDE	1.66E-12	4.32E-12	9.10E+00		1.51E-11	3.93E-11	4.64E-12	1.21E-11	1.30E-05		3.57E-07	9.29E-07
HEXACHLOROBENZENE	5.39E-12	3.45E~11	1.60E+00		8.62E-12	5.52E-11	1.51E-11	9.87E-11	8.00E-04		1.89E-08	1.21E-07
LINDANE (GAMMA-BHC)	1.84E-12	3.78E-12	1.30E+00		2.39E-12	4.91E-12	5.14E-12	1.06E-11	3.00E-04		1.71E-08	3.53E-08
MIREX	2.75E-12	8.15E-12	1.80E+00	Ì	4.95E-12	1.47E-11	7.69E-12	2.28E-11	2.00E-04		3.85E-08	1.14E-07
TRANS-NONACHLOR	2.51E-12	5.91E-12		ND	-	_	7.02E-12	1.66E-11		ND	_	_
o,p'-DDD	8,83E-12	1.39E-11		ND	<u>-</u>	_	2.47E-11	3.89E-11	-	ND	_	_
o,p'-DDE	5.48E-12	1.05E-11		ND		_	1.54E-11	2.95E-11		ND	_	_
o,p'-DDT	5.59E-12	2.01E-11		ND	_		1.56E-11	5.64E-11		ND	_	_
p,p'-DDD	3.48E-11	7.67E-11	2.40E-01	 	8.36E-12	1.84E-11	9.75E-11	2.15E-10		ND	_	_
p,p'-DDE	1.66E-11	3.07E-11	3.40E-01	†	5.63E-12	1.04E-11	4.64E-11	8.59E-11		ND	_	_
p.p'DDT	2.48E-11	6.77E-11	3.40E-01		8.42E-12	2.30E-11	6.93È-11	1.89E-10	5.00E-04		1.39E-07	3.79E-07
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	4.62E-09	9.11E-09		ND	_	_	1.29E-08	2.55E-08	3,00E-01		4.31E-08	8.50E-08
BENZO(A)ANTHRACENE	1.35E-08	2.16E-08	5.80E+00	1	7.81E-08	1.25E-07	3.77E-08	6.04E-08		ND	_	_
BENZO(A)PYRENE	1.59E-08	2.73E-08	5.80E+00		9.21E-08	1.59E-07	4.45E-08	7.65E-08		ND		_
BENZO(E)PYRENE	1.23E-08	2.01E-08		ND	_	_	3.45E-08	5.64E-08		ND	_	_
BENZO(G.H.I)PERYLENE	8.23E-09	1.82E-08		ND	_		2.30E-08	5.10E-08	4.00E-03		5.76E-06	1.28E-05
CHRYSENE	1.45E-08	2.49E-08	5.80E+00	· · · · · · ·	8.40E-08	1.45E-07	4.05E-08	6.98E-08		ND	_	
DIBENZO(A,H)ANTHRACENE	2.04E-09	4.03E-09	5.80E+00	 	1.18E-08	2.34E-08	5.71E-09	1.13E-08		ND		
FLUORANTHENE	2.78E-08	4.79E-08		ND	_	_	7.80E-08	1.34E-07	4.00E-02		1.95E-06	3.36E-06
FLUORENE	1.51E-09	3.31E-09		ND		_	4.24E-09	9.26E-09	4.00E-02		1.08E-07	2.32E-07
INDENO(1,2,3-CD)PYRENE	8.45E-09	1.63E-08	5.80E+00		4.90E-08	9.45E-08	2.37E-08	4.56E-08		ND		
PERYLENE	5.54E-09	8.15E-09	,	ND	_	_	1.55E-08	2.28E-08	-	ND		-
PHENANTHRENE	1.42E-08	2.54E-08		ND	_	-	3.99E-08	7.12E-08	4.00E-03		9.97E-06	1.78E-05
PYRENE	2.69E-08	4.51E-08		ND	-	-	7.52E-08	1.26E-07	3.00E-02		2.51E-06	4.21E-06
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	3.91E-09	9.13E-09	7.70E+00		3.01E-08	7.03E-08	1.10E-08	2.56E-08		ND	-	-
					AVG	MAX			eng Ografie og som	4.43	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					3.45E-07	1	CUMULATIVI HAZARD QU	E NONCARCI OTIENT:	NOGENIC		2.13E-05	4.13E-05

TABLE 5-46
POTENTIAL RISKS CALCULATED FOR DERMAL CONTACT WITH SEDIMENT FROM YORK HARBOR SAMPLE LOCATIONS FOR CURRENT CONDITIONS RECREATIONAL EXPOSURES, WHILE SWIMMING, FISHING AND WADING, OFF-SHORE IMPACTS PORTSMOUTH NAVAL SHIPYARD

			CARCING	OGEN	IC RISKS			NO	NCARCINOG	ENIC I	RISKS	, v ;
	CHRO DAIL' INTAK (mg/kg/	Y Œ	ORAL SLOPE FACTOR		CHEMICAI SPECIFIC RISK	T	CHROI DAILY INTAK (mg/kg/k	(ans.		CHEMICAI SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-	1	AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
PESTICIDES												
ALDRIN	3.27E-12	3.46E-12	1.70E+01	<u> </u>	5.55E-11	5.88E-11	9.14E-12	9.68E-12	3.00E-05		3.05E-07	3.23E-07
p,p'-DDT	2.87E-11	3.31E-11	3.40E-01		9.75E-12	1.13E-11	8.03E-11	9.28E-11	5.00E-04		1.61E-07	1.86E-07
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	7.19E-10	8:15E-10		ND	-		2.01E-09	2.28E-09	3.00E-01		6.71E-09	7.61E-09
BENZO(A)ANTHRACENE	2.13E-09	3.12E-09	5.80E+00		1.24E-08	1.81E-08	5.97E-09	8.73E-09		ND	_	_
BENZO(A)PYRENE	2.66E-09	4.03E-09	5.80E+00	†	1.54E-08	2.34E-08	7.45E-09	1.13E-08		ND	-	_
BENZO(E)PYRENE	1.87E-09	2.88E~09		ND	_	-	5.24E-09	8.05E-09		ND	-	-
BENZO(G,H,I)PERYLENE	1.17E-09	2.16E-09		ND	_	-	3.29E-09	6.04E-09	4.00E-03		8.22E-07	1.51E-06
CHRYSENE	2.42E-09	3.64E-09	5.80E+00	1	1.40E-08	2.11E-08	6.78E-09	1.02E-08		ND	_	
FLUORANTHENE	5.37E-09	7.19E-09		ND	-	_	1.50E-08	2.01E-08	4.00E-02		3.76E-07	5.03E-07
FLUORENE	2.64E-10	2.88E-10		ND	_	-	7.38E-10	8.05E-10	4.00E-02		1.85E-08	2.01E-08
INDENO(1,2,3-CD)PYRENE	1.51E-09	2.73E-09	5.80E+00		8.76E-09	1.59E-08	4.23E-09	7.65E-09		ND	_	-
PERYLENE	6.71E-10	1.15E-09		ND	-	_	1.88E-09	3.22E-09		ND	-	_
PHENANTHRENE	3.09E-09	3.55E-09		ND		_	8.66E-09	9.93E-09	4.00E-03		2.16E-06	2.48E-06
PYRENE	4.53E-09	6.23E-09		ND	_	_	1.27E-08	1.75E-08	3.00E-02		4.23E-07	5.82E-07
POLYCHLORINATED BIPHENYLS (PCBs)	:											
TOTAL PCBs (AROCHLOR)	3.88E-10	4.94E-10	7.70E+00		2.99E-09	3.80E-09	1.09E-09	1.38E-09		ND	-	
<u> Hiller fielde de fielde de filster en en en en en en en en en en en en en </u>			y in the second	4.5.7	AVG	MAX					AVG	MAX
UMULATIVE CARCINOGENIC RISK:					5.37E-08	8.23E-08	CUMULATIV		NOGENIC		4.28E-06	5.61E-06

TABLE 5-47
POTENTIAL RISKS CALCULATED FOR INGESTION OF SURFACE WATER FOR SAMPLES COLLECTED FROM THE LOWER PISCATAQUA RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	e de la company		CARCINO	GENI	C RISKS			NC	NCARCINOG	ENIC F	IISKS	
	CHRO DAIL' INTAK (mg/kg/	Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHRO DAILY INTAK (mg/kg/c	E	RÆ		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-1		AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												1 211655555 E
ALUMINUM	5.33E-07	2.49E-06		ND	_	_	1.24E-06	5.81E-06	2.90E+00		4,29E-07	2.00E-06
IRON	6.80E-07	3.36E-06		ND	-	_	1.59E-06	7.84E-06		ND	_	
LEAD	9.65E-09	5.19E-08		ND		_	2.25E-08	1.21E-07		ND	_	
		<u>-</u>	······································		AVG	MAX	 				AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					_	-	CUMULATIV HAZARD QU		NOGENIC		4.29E-07	2.00E-06

TABLE 5-48
POTENTIAL RISKS CALCULATED FOR INGESTION OF SURFACE WATER
FOR SAMPLES COLLECTED FROM THE LOWER PISCATAQUA EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT
RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

		4	CARCINO	ENIC	C RISKS	100		NO.	NCARCINOGE	NIC R	ISKS	
	CHRO		ORAL		CHEMICAL		CHRO			nga rijor	CHEMICAL SPECIFIC	7.5
	INTAK (mg/kg/c	Æ	SLOPE		SPECIFIC		INTAK (mg/kg/d	E	RfD	Yeri	HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)1		AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	6.84E-07	2.07E-06		ND	-	-	1.92E-06	5.81E-06	2.90E+00		6.60E-07	2.00E-06
IRON	6.88E-07	2.80E-06		ND	-	_	1.93E-06	7.84E-06		ND	-	-
LEAD	7.75E-09	1.91E-08		ND	-	-	2.17E-08	5.34E-08		ND	_	_
NICKEL	1.07E-07	5.85E-07		ND	-	-	3.00E-07	1.64E-06	2.00E-02		1.50E-05	8.19E-05
					AVG	MAX				1	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					-		CUMULATIV HAZARD QU		NOGENIC		1.56E-05	8.39E-05

TABLE 5-49
POTENTIAL RISKS CALCULATED FOR INGESTION OF SURFACE WATER FOR SAMPLES COLLECTED AROUND SEAVEY ISLAND RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINOG	ENI	C RISKS			NO	NCARCINOGE	ENIC F	NSKS	
NALYTE	CHRO DAIL INTAI (mg/kg/	Y. Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK	Ť., +	CHRO DAILY INTAK (mg/kg/c	(Œ	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
	AVG	MAX	(mg/kg/day)-1		AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS									, , , , , , , , , , , , , , , , , , , ,		The second second	
ALUMINUM	3.79E-07	1.32E-06		ND	-	-	1.06E-06	3.69E-06	2.90E+00		3.66E-07	1.27E-06
IRON	5.58E-07	1.37E-06		ND	_	-	1.56E-06	3.85E-06		ND	-	
LEAD	1.00E-08	4.32E-08		ND	-	-	2.80E-08	1.21E-07		ND	_	-
					AVG	MAX					AVG	MAX
CUMULATIVE CARCINOGENIC RISK:				CUMULATIV HAZARD QU		NOGENIC		3. 6 6E-07	1.27E-06			

TABLE 5-50
POTENTIAL RISKS CALCULATED FOR INGESTION OF SURFACE WATER FOR SAMPLES COLLECTED FROM CLARK'S ISLAND EMBAYMENT RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINOG	ENK	C RISKS			NC	NCARCINOGI	ENIC F	IISKS	
	CHRO DAILY INTAK (mg/kg/c	Œ	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RfD		CHEMICAL SPECIFIC HAZARD QUOTIEN	
ANALYTE	AVG	MAX	(mg/kg/day)-1		AVG	MAX	AVG	MAX	(mg/kg/day)		AVG	MAX
INORGANICS												
ALUMINUM	3.26E-07	1.04E-06		ND	-	-	9.12E-07	2.92E-06	2.90E+00		3.14E-07	1.01E-06
IRON	4.79E-07	1.39E-06	1	ND	_	-	1.34E-06	3.88E-06		ND	_	_
			adala ka 10		AVG	MAX	128		er er Talanta	1	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					_	_	CUMULATIV HAZARD QU		INOGENIC		3.14E-07	1.01E-06

TABLE 5-51
POTENTIAL RISKS CALCULATED FOR INGESTION OF SURFACE WATER FOR SAMPLES COLLECTED FROM YORK HARBOR RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

			CARCINO	ENK	RISKS			NO	NCARCINOGI	ENIC F	RISKS	
	CHRO DAIL INTAI (mg/kg/	Y KE	ORAL SLOPE FACTOR		CHEMICAL SPECIFIC RISK		CHROI DAILY INTAK (mg/kg/c	E	RſO		CHEMICA SPECIFIC HAZARE QUOTIEI	
ANALYTE	AVG	MAX	(mg/kg/day)-1	Ī	AVG	MAX	AVG	MAX	(mg/kg/day)	Marie .	AVG	MAX
INORGANICS												
ALUMINUM	1.12E-06	2.39E-06		ND	_	_	3.14E-06	6.70E-06	2.90E+00		1.08E-06	2.31E-06
IRON	1.35E-06	3.79E-06		ND	_	-	3.78E-06	1.06E-05		ND	-	-
LEAD	8.01E-09	2.29E-08		ND	-	_	2.24E-08	6.41E-08		ND	-	-
			•		AVG	MAX		·		•	AVG	MAX
CUMULATIVE CARCINOGENIC RISK:					_	_	CUMULATIV HAZARD QU		NOGENIC		1.08E-06	2.31E-06

TABLE 5-52

PREDICTED CHILDREN'S BLOOD LEAD RESULTING FROM INGESTION OF LOBSTER, MUSSELS AND FLOUNDER IN THE LOWER PISCATAQUA FOR AVERAGE AND WORST CASE INGESTION RATES

Species	Lead Concentrations mg/kg	Seafood Ingestion Rate % of Total Meat	Exposure Scenario (Defined by Model)	Predicted Children's Geometric Mean Blood Lead Levels µg/dL ⁽¹⁾	Intercept ⁽²⁾ %
Lobsters,	0.04	10.0	Average	3.6	1.39
Flounder		50.0	Worst Case	3.8	1.76
Mussels	1.03	10.0 50.0	Average Worst Case	4.9 9.6	6.03 45.07
Weighted	0.24	10.0	Average	3.9	1.99
Average ⁽³⁾		50.0	Worst Case	5.1	6.84

Culon = 10

⁽¹⁾ Predicted from USEPA Integrated Exposure Uptake Biokinetic Model Version 99d.

⁽²⁾ Represent % of population predicted to have blood lead concentrations above 10 μ g/dL.

⁽³⁾ Weighted average of lobster tail + whole lobster + flounder + mussels, with equal weighting applied for each.

TABLE 5-53
SUMMARY OF TOTAL POLYAROMATIC HYDROCARBONS FOR LOWER PISCATAQUA SAMPLE LOCATIONS
OFF-SHORE HUMAN HEALTH RISK ASSESSMENT
PORTSMOUTH NAVAL SHIPYARD

	CARCINOGENIC RISK		NONCARCINOGENIC RISK		
	AVERAGE	MAXIMUM	AVERAGE MAXIMUM		
TABLE 5-1					
CONSUMPTION OF LOBST	TER TAIL FLESH CAUGHT AT	THE LOWER PISCATAG	UA SAMPLE LOCATIONS FOR RECREATIONAL	FISHING	
TOTAL PAHS	2.73E-04	1.16E-03	2.18E-02 1.02E-01		
TABLE 5-6					
CONSUMPTION OF LOBST	TER TAIL FLESH CAUGHT AT	THE LOWER PISCATAG	UA SAMPLE LOCATIONS FOR SUBSISTENCE F	ISHING	
TOTAL PAHs	6.67E-04	2.82E-03	5.34E-02 2.50E-01		
TABLE 5-11					
CONSUMPTION OF WHOL	E LOBSTER (TAIL FLESH AND	HEPATOPANCREAS W	EIGHTED AVERAGE)		
AND THE STREET, AND ASSESSED AS A STREET OF THE STREET, AND ASSESSED.	PISCATAQUA SAMPLE LOCAT				
TOTAL PAHs	3.06E-04	1.18E-03	3.53E-02 1.01E-01		
TABLE 5-13		1.102-00	V.OGE 02 1.072 01		
TABLE 5-13					
TABLE 5-13 CONSUMPTION OF WHOL	E LOBSTER (TAIL FLESH AND PISCATAQUA SAMPLE LOCAT	HEPATOPANCREAS W	EIGHTED AVERAGE)		
TABLE 5-13 CONSUMPTION OF WHOL	E LOBSTER (TAIL FLESH AND	HEPATOPANCREAS W	EIGHTED AVERAGE)		
TABLE 5-13 CONSUMPTION OF WHOLI CAUGHT AT THE LOWER F TOTAL PAHS	E LOBSTER (TAIL FLESH AND PISCATAQUA SAMPLE LOCAT	HEPATOPANCREAS W	EIGHTED AVERAGE) CE FISHING		
TABLE 5-13 CONSUMPTION OF WHOLI CAUGHT AT THE LOWER F TOTAL PAHS TABLE 5-21	E LOBSTER (TAIL FLESH AND PISCATAQUA SAMPLE LOCAT 7.47E-04	HEPATOPANCREAS W IONS FOR SUBSISTEN 2.89E-03	EIGHTED AVERAGE) CE FISHING		
TABLE 5-13 CONSUMPTION OF WHOLI CAUGHT AT THE LOWER F TOTAL PAHS TABLE 5-21 CONSUMPTION OF MUSSI	E LOBSTER (TAIL FLESH AND PISCATAQUA SAMPLE LOCAT 7.47E-04	HEPATOPANCREAS W IONS FOR SUBSISTEN 2.89E-03	EIGHTED AVERAGE) DE FISHING 8.64E-02 2.46E-01		
TABLE 5-13 CONSUMPTION OF WHOLI CAUGHT AT THE LOWER F TOTAL PAHS TABLE 5-21 CONSUMPTION OF MUSSI TOTAL PAHS	E LOBSTER (TAIL FLESH AND PISCATAQUA SAMPLE LOCAT 7.47E-04 ELS CAUGHT AT THE LOWER	HEPATOPANCREAS WITHOUT TO THE PROPERTY OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN OF SUBSISTEN	EIGHTED AVERAGE) DE FISHING 8.64E-02 2.46E-01 LOCATIONS FOR RECREATIONAL FISHING		
TABLE 5-13 CONSUMPTION OF WHOLI CAUGHT AT THE LOWER F TOTAL PAHS TABLE 5-21 CONSUMPTION OF MUSSI TOTAL PAHS TABLE 5-21	E LOBSTER (TAIL FLESH AND PISCATAQUA SAMPLE LOCAT 7.47E-04 ELS CAUGHT AT THE LOWER 1.40E-05	PISCATAQUA SAMPLE 3.94E-05	EIGHTED AVERAGE) DE FISHING 8.64E-02 2.46E-01 LOCATIONS FOR RECREATIONAL FISHING		
TABLE 5-13 CONSUMPTION OF WHOLI CAUGHT AT THE LOWER F TOTAL PAHS TABLE 5-21 CONSUMPTION OF MUSSI TOTAL PAHS TABLE 5-21	E LOBSTER (TAIL FLESH AND PISCATAQUA SAMPLE LOCAT 7.47E-04 ELS CAUGHT AT THE LOWER 1.40E-05	PISCATAQUA SAMPLE 3.94E-05	EIGHTED AVERAGE) CE FISHING 8.64E-02 2.46E-01 LOCATIONS FOR RECREATIONAL FISHING 1.07E-03 3.55E-03		
TABLE 5-13 CONSUMPTION OF WHOLI CAUGHT AT THE LOWER F TOTAL PAHS TABLE 5-21 CONSUMPTION OF MUSSI TOTAL PAHS TABLE 5-21 CONSUMPTION OF MUSSI TOTAL PAHS	E LOBSTER (TAIL FLESH AND PISCATAQUA SAMPLE LOCAT 7.47E-04 ELS CAUGHT AT THE LOWER 1.40E-05 ELS CAUGHT AT THE LOWER	PISCATAQUA SAMPLE	EIGHTED AVERAGE) DE FISHING 8.64E-02 2.46E-01 LOCATIONS FOR RECREATIONAL FISHING 1.07E-03 3.55E-03 LOCATIONS FOR SUBSISTENCE FISHING		
TABLE 5-13 CONSUMPTION OF WHOLI CAUGHT AT THE LOWER F TOTAL PAHS TABLE 5-21 CONSUMPTION OF MUSSI TOTAL PAHS TABLE 5-21 CONSUMPTION OF MUSSI TOTAL PAHS TABLE 5-27	E LOBSTER (TAIL FLESH AND PISCATAQUA SAMPLE LOCAT 7.47E-04 ELS CAUGHT AT THE LOWER 1.40E-05 ELS CAUGHT AT THE LOWER 3.42E-05	PISCATAQUA SAMPLE PISCATAQUA SAMPLE 9.64E-05	EIGHTED AVERAGE) DE FISHING 8.64E-02 2.46E-01 LOCATIONS FOR RECREATIONAL FISHING 1.07E-03 3.55E-03 LOCATIONS FOR SUBSISTENCE FISHING		

TABLE 5-54
SUMMARY OF RISKS EXCEEDING NCP RISK GOALS FOR CARCINOGENS AND NONCARCINOGENS FOR SAMPLES COLLECTED FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS PORTSMOUTH NAVAL SHIPYARD

	CARCINO	ENS	NONCARCIN	IOGENS
	AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
TABLE 5-1				
	L FLESH CAUGHT A	T THE LOWER PISC	ATAQUA SAMPLE LOC	ATIONS, RECREATIONAL EXPOSURES
ARSENIC	1.50E-03	2.92E-03	6.66E+00	1.30E+01
ALDRIN	_	1.92E-06	-	-
HEPTACHLOR EPOXIDE		1.42E-06	<u> </u>	-
BENZO(A)ANTHRACENE	6.69E-05	2.87E-04	-	-
BENZO(A)PYRENE	7.16E-05	2.92E-04	-	-
CHRYSENE	1.15E-04	5.12E-04	-	-
INDENO(1,2,3-CD)PYRENE	1.93E-05	6.38E-05	-	_
TOTAL PCBs (AROCHLOR)	3.27E-05	5.91E-05	-	_
TABLE 5-6			A Company of the Comp	
CONSUMPTION OF LOBSTER TAIL	L FLESH CAUGHT A	T THE LOWER PISC	TAQUA SAMPLE LOCA	ATIONS FOR SUBSISTENCE FISHING
ARSENIC	3.66E-03	7.13E-03	1.63E+01	3.17E+01
MERCURY	-	-	1.64E+00	2.10E+00
ALDRIN	2.24E-06	6.19E-06	-	_
HEPTACHLOR EPOXIDE	1.22E-06	3.38E-06	_	_
BENZO(A)ANTHRACENE	1.63E-04	7.03E-04		-
BENZO(A)PYRENE	1.75E-04	7.15E-04	_	_
CHRYSENE	2.81E-04	1.25E-03	_	- 1
INDENO(1,2,3-CD)PYRENE	4.71E-05	1.56E-04	_	-
TOTAL PCBs (AROCHLOR)	8.00E-05	1.44E-04		-
TABLE 5-11		4 18 84.		
CONSUMPTION OF WHOLE LOBS	TER (TAIL FLESH A	ND HEPATOPANCRE	AS WEIGHTED AVERAG	ക
CAUGHT AT THE LOWER PISCATA				
ARSENIC	1.70E-03	3.37E-03	7.55E+00	1.50E+01
ALDRIN	1.37E~06	3.97E-06	_	-
HEPTACHLOR EPOXIDE	-	1.86E-06		_
HEXACHLOROBENZENE	_	2.20E-06		-
p.p'-DDE	2.32E-06	4.24E-06	_	-
BENZO(A)ANTHRACENE	7.36E-05	2.92E-04	-	<u> </u>
BENZO(A)PYRENE	8.20E-05	3.03E-04		
CHRYSENE	1.23E-04	5.05E-04	-	<u> </u>
INDENO(1,2,3-CD)PYRENE	2.67E-05	8.06E-05		
TOTAL PCBs (AROCHLOR)	2.99E-04	6.31E-04		

TABLE 5-54
SUMMARY OF RISKS EXCEEDING NCP RISK GOALS FOR CARCINOGENS AND NONCARCINOGENS
FOR SAMPLES COLLECTED FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS
PORTSMOUTH NAVAL SHIPYARD

	CARCINOGENS		NONCARCII	NOGENS
	AVERAGE	MUMIXAM	AVERAGE	MAXIMUM
TABLE 5-13				
CONSUMPTION OF WHOLE LOBSTEP	(TAIL FLESH A	ND HEPATOR	PANCREAS WEIGHTED AVERA	AGE)
CAUGHT AT THE LOWER PISCATAQU	A SAMPLE LOC	ATIONS FOR	SUBSISTENCE FISHING	
ARSENIC	4.15E-03	8.23E-03	1.85E+01	3.66E+01
CADMIUM	_	-	-	1.72E+00
MERCURY	-	-	1.53E+00	1.98E+00
ALDRIN	3.35E-06	9.70E-06	-	-
HEPTACHLOR	-	1.27E-06	-	-
HEPTACHLOR EPOXIDE	1.61E-06	4.55E-06	-	-
HEXACHLOROBENZENE	2.14E-05	5.38E-05		-
LINDANE (GAMMA-BHC)	- [2.21E-06	-	-
p,p'-DDE	5.67E-06	1.04E-05	-	-
BENZO(A)ANTHRACENE	1.80E-04	7.15E-04	-	-
BENZO(A)PYRENE	2.00E-04	7.41E-04	-	-
CHRYSENE	3.02E-04	1.23E-03	-	
INDENO(1,2,3-CD)PYRENE	6.54E-05	1.97E-04		· -
TOTAL PCBs (AROCHLOR)	7.31E-04	1.54E-03	-	-
TABLE 5-15				
CONSUMPTION OF MUSSELS CAUGH	IT AT THE LOW	ER PISCATAC	QUA SAMPLE LOCATIONS, RE	CREATIONAL EXPOSURES
ARSENIC	4.80E-04	1.22E-03	2.13E+00	5.42E+00
ALDRIN	1.48E-06	2.03E-05	-	-
ALPHA-CHLORDANE	-	1.08E-06	-	-
HEXACHLOROBENZENE	- 1	2.78E-06		-
LINDANE (GAMMA-BHC)	-	1.71E-06	-	-
p,p'-DDE	-	1.12E-06	-	-
p,p'-DDT	-	1.04E-06		-
BENZO(A)ANTHRACENE	3.80E-06	1.36E-05	-	-
BENZO(A)PYRENE	2.47E-06	8.38E-06	-	-
CHRYSENE	7.73E-06	1.74E-05		-
TOTAL PCBs (AROCHLOR)	5.26E-05	1.47E-04	_	-

TABLE 5-54
SUMMARY OF RISKS EXCEEDING NCP RISK GOALS FOR CARCINOGENS AND NONCARCINOGENS
FOR SAMPLES COLLECTED FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS
PORTSMOUTH NAVAL SHIPYARD

	CARCINO		NONCARCIN	NOGENS
	AVERAGE	MAXIMUM	AVERAGE	MAXIMUM
TABLE 5-21 CONSUMPTION OF MUSSELS CAUGH	T AT THE LOWI	ER PISCATAQUA SAI	MPLE LOCATIONS FOR	R SUBSISTENCE FISHING
ARSENIC	1.17E-03	2.98E-03	5.21E+00	1.33E+01
ALDRIN	3.62E-06	4.97E-05	-	-
ALPHA-CHLORDANE	-	2.64E-06	-	-
HEPTACHLOR EPOXIDE	=	1.78E-06		-
HEXACHLOROBENZENE		6.80E-06	-	-
LINDANE (GAMMA-BHC)	-	4.17E-06	-	-
p,p'-DDD	-	1.78E-06	-	-
p,p'-DDE	_	2.74E-06	-	-
p,p'-DDT	-	2.54E-06	-	-
BENZO(A)ANTHRACENE	9.28E-06	3.33E-05	-	
BENZO(A)PYRENE	6.03E-06	2.05E-05	-	-
CHRYSENE	1.89E-05	4.26E-05	-	-
TOTAL PCBs (AROCHLOR)	1.28E-04	3.58E-04	-	-
CONSUMPTION OF FLOUNDER FILLET ARSENIC ALDRIN	8.17E-04 1.42E-06	9.71E-04 3.23E-06	3.63E+00	4.32E+00
HEPTACHLOR EPOXIDE	-	1.73E-06		-
HEXACHLOROBENZENE	-	1.22E-06	_	_
p,p'-DDE		1.02E-06	-	-
TOTAL PCBs (AROCHLOR)	8.23E-05	1.95E-04	-	
TABLE 5-32 CONSUMPTION OF FLOUNDER FILLET				
ARSENIC	2.00E-03	2.37E-03	8.88E+00	1.05E+01
ALDRIN	3.46E-06	7.90E-06		· -
HEPTACHLOR	-	2.09E-06	-	
HEPTACHLOR EPOXIDE	1.17E-06	4.23E-06	-	-
HEXACHLOROBENZENE		2.98E-06	-	-
o,p'-DDE	-	2.48E-06		<u>-</u>
p,p'-DDT		1.40E-06		-
TOTAL PCBs (AROCHLOR)	2.01E-04	4.77E-04	-	-
ΓABLE 5-37			된다 하는 다 생각의 하는데	
NGESTION OF SEDIMENT FROM THE I	OWER PISCAT	TAOLIA SAMPLE LOC	ATIONS	

TABLE 5-55
SUMMARY OF RISKS EXCEEDING NCP RISK GOALS FOR CARCINOGENS AND NONCARCINOGENS
OFF-SHORE RISK ASSESSMENT
PORTSMOUTH NAVAL SHIPYARD

AVERAGE MAXIMUM TABLE 5-2 CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT FROM LOWER PISCATAQUA SAMPLE LOCATEXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT, RECREATIONAL EXPOSURES ARSENIC 7.21E-04 1.01E-03 ALDRIN 1.52E-06 2.53E-06 BENZO(A)ANTHRACENE 1.77E-04 2.87E-04	Arthur Straff Strain	
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT FROM LOWER PISCATAQUA SAMPLE LOCATEXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT, RECREATIONAL EXPOSURES ARSENIC 7.21E-04 1.01E-03 ALDRIN 1.52E-06 2.53E-06 BENZO(A)ANTHRACENE 1.77E-04 2.87E-04		Janes Carriel
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT, RECREATIONAL EXPOSURES ARSENIC 7.21E-04 1.01E-03 ALDRIN 1.52E-06 2.53E-06 BENZO(A)ANTHRACENE 1.77E-04 2.87E-04		
ARSENIC 7.21E-04 1.01E-03 ALDRIN 1.52E-06 2.53E-06 BENZO(A)ANTHRACENE 1.77E-04 2.87E-04		<u>Jalanso, kiejas — "Elijo</u>
ALDRIN 1.52E-06 2.53E-06 BENZO(A)ANTHRACENE 1.77E-04 2.87E-04	3.21E+00	1 4 40 - 1 - 0
BENZO(A)ANTHRACENE 1.77E-04 2.87E-04		
		-
	-	-
BENZO(A)PYRENE 1.81E-04 2.92E-04		
CHRYSENE 3.03E-04 5.12E-04		
NDENO(1,2,3-CD)PYRENE 4.32E-05 6.38E-05	_	-
TOTAL PCBs (AROCHLOR) 2.10E-05 2.17E-05		
TABLE 5-3		
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AROUND SEAVEY ISLAND, RECREATIONAL	EXPOSURES	
ARSENIC 2.17E-03 2.92E-03	9.63E+00	1.30E+01
HEPTACHLOR EPOXIDE - 1.39E-06		_
BENZO(A)PYRENE 5.41E-06 7.34E-06	·	<u>-</u>
TOTAL PCBs (AROCHLOR) 4.29E-05 5.90E-05	-	_
TABLE 5-4		
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT CLARK'S ISLAND EMBAYMENT SAMPLE I	LOCATIONS, RECR	IEATIONAL EXPOSURES
ARSENIC 1.61E-03 1.62E-03	7.14E+00	7.20E+00
BENZO(A)ANTHRACENE 3.64E-05 6.80E-05		_
3ENZO(A)PYRENE 4.29E-05 7.72E-05	_	_
CHRYSENE 6.41E-05 1.00E-04	_	
NDENO(1,2,3-CD)PYRENE 1.43E-05 2.39E-05	-	-
TOTAL PCBs (ARCHLOR) 3.39E-05 4.44E-05	_	_
TABLE 5-5		
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT AT YORK HARBOR SAMPLE LOCATIONS, RE	CREATIONAL EXPO	OSURES
TOTAL PCBs (AROCHLOR) 3.15E-05	_	_
TABLE 5-7		
CONSUMPTION OF LOBSTER TAIL FLESH CAUGHT FROM LOWER PISCATAQUA SAMPLE LOCAT	LIONS	
EXCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT FOR SUBSISTENCE FISHING		마시 가능하다 하는 사람들이 있는 것이 되는 것이 말라. 1994년 특하다 아니라 사람이 있습니다.
ARSENIC 5.31E-03 7.43E-03	2.36E+01	3.30E+01
MERCURY	4.21E+00	3.30ET01
	4.216+00	
ALDRIN 1.12E-05 1.86E-05		
HEPTACHLOR - 1.53E-06		
HEPTACHLOR EPOXIDE 2.36E-06 4.29E-06		
BENZO(A)ANTHRACENE 1.30E-03 2.12E-03		-
BENZO(A)PYRENE 1.33E-03 2.15E-03		
CHRYSENE 2.23E-03 3.76E-03	·	
NDENO(1,2,3-CD)PY RENE 3.18E-04 4.70E-04 FOTAL PCBs (AROCHLOR) 2.10E-05 2.17E-05		

TABLE 5-55
SUMMARY OF RISKS EXCEEDING NCP RISK GOALS FOR CARCINOGENS AND NONCARCINOGENS
OFF-SHORE RISK ASSESSMENT
PORTSMOUTH NAVAL SHIPYARD

	CARCINOGENIC RISK		NONCARCINOGENIC RISK		
TABLE 5-8	AVERAGE	MAXIMUM		MAXIMUM	
[1] 공항 1752년 77 - 15:	ELECU CALICUT ADO	IIND OF AVEY	ISLAND FOR SUBSISTENCE FISHING		
ARSENIC	1.59E-02	2.15E-02			
MERCURY	1.59E-02	2.15E-02	7.08E+01	9.54E+01	
ALDRIN	5.83E-06		5.44E+00	5.61E+00	
HEPTACHLOR					
HEPTACHLOR EPOXIDE	1.54E-06	1005.05		<u> </u>	
HEXACHLOROBENZENE	6.69E-06	1.03E-05		-	
	2.19E-06	1075 00			
p,p'- DDE BENZO(A)PYRENE		1.07E-06	<u></u>	-	
	3.98E-05	5.40E-05		-	
TOTAL PCBs (AROCHLOR)	3.15E-04	4.34E-04	—		
TABLE 5-9 CONSUMPTION OF LOBSTER TAIL	FLESH CAUGHT AT C	LARK'S ISLAN	D EMBAYMENT SAMPLE LOCATIONS FOR S	SUBSISTENCE FISHING	
ARSENIC	1.18E-02	1.19E-02	5.25E+01	5.30E+01	
MERCURY		_	4.77E+00	6.33E+00	
ALDRÍN	4.56E-06	6.11E-06	-	_	
HEPTACHLOR	1.32E-06	1.62E-06	-	_	
HEPTACHLOR EPOXIDE	2.59E-06	3.46E-06			
HEXACHLOROBENZENE	1.79E-06	2.22E06	_	_	
LINDANE	_	1.37E-06	_		
p,p'- DDT		1.72E-06	_		
BENZO(A)ANTHRACENE	2.68E-04	5.00E-04	_	-	
BENZO(A)PYRENE	3.16E-04	5.68E-04	-	-	
CHRYSENE	4.72E-04	7.39E-04		-	
INDENO(1,2,3-CD)PYRENE	1.05E-04	1.76E04	_		
TOTAL PCBs (AROCHLOR)	2.50E-04	3.27E-04	-	-	
TABLE 5-10					
CONSUMPTION OF LOBSTER TAIL	FLESH CAUGHT AT YO	ORK HARBOR	SAMPLE LOCATIONS FOR SUBSISTENCE F	ISHING	
ALDRIN	3.29E-06	*	-	_	
HEPTACHLOR	1.53E-06	*	-	-	
HEPTACHLOR EPOXIDE	5.05E-06	*			
TOTAL PCBs (AROCHLOR)	2.32E-04	*	-	_	
TABLE 5-12 CONSUMPTION OF WHOLE LOBST CAUGHT AT YORK HARBOR SAMP	ER (TAIL FLESH AND I	HEPATOPANC ATIONAL EXP	REAS WEIGHTED AVERAGE) OSURES		
TOTAL PCBs (ARCHLOR)	2.87E-05	2.24E-04	_	<u> </u>	

TABLE 5-55
SUMMARY OF RISKS EXCEEDING NCP RISK GOALS FOR CARCINOGENS AND NONCARCINOGENS
OFF-SHORE RISK ASSESSMENT
PORTSMOUTH NAVAL SHIPYARD

	CARCINOGI	ENIC RISK	NONCARCIN	NONCARCINOGENIC RISK		
TABLE 5-14 CONSUMPTION OF WHOLE LOBST CAUGHT AT YORK HARBOR SAMP	TER (TAIL FLESH AND I			MAXIMUM		
ALDRIN	5.00E-06	*		_		
HEPTACHLOR	1.40E-06	1.92E-06	<u> </u>			
HEPTACHLOR EPOXIDE	4.60E-06	5.67E-06		_		
HEXACHLOROBENZENE	-	6.50E-06	_	-		
p.p'- DDE	_	1.98E-05		-		
TOTAL PCBs (ARCHLOR)	2.11E-04	1.65E-03	-			
TABLE 5-16 CONSUMPTION OF MUSSELS CAU EXCLUDING SEAVEY ISLAND AND	CLARK'S ISLAND EMB	AYMENT, RECRE	ATIONAL EXPOSURES			
ARSENIC	5.26E-04	7.10E-04	2.34E+00	3.16E+00		
ALDRIN	4.59E-06	2.03E-05	<u>-</u>			
ALPHA-CHLORDANE		1.08E-06				
HEXACHLOROBENZENE	<u>-</u>	2.78E-06	_ _	<u>-</u>		
p,p'- DDE		1.12E-06		_		
p,p'- DDT		1.04E-06	-	_		
BENZO(A)ANTHRACENE	6.21E-06	1.36E-05		-		
BENZO(A)PYRENE	4.36E-06	8.38E-06	_	_		
CHRYSENE	8.77E-06	1.74E-05		<u> </u>		
TOTAL PCBs (AROCHLOR)	4.22E-05	5.69E-05	_	·		
TABLE 5-17 CONSUMPTION OF MUSSELS CAU	JGHT AROUND SEAVEY	' ISLAND, RECRE	ATIONAL EXPOSURES			
ARSENIC	4.01E-04	7.49E-04	1.78E+00	3.33E+00		
ALDRIN	-	2.43E~06				
LINDANE	-	1.71E-06	-			
CHRYSENE	6.86E-06	1.33E-05	-	<u>-</u>		
TOTAL PCBs (AROCHLOR)	4.79E-05	1.18E04				
TABLE 5-18 CONSUMPTION OF MUSSELS CAU	IGHT AT CLARK'S ISLA	ND EMBAYMENT	SAMPLE LOCATIONS, RECREATIONAL E	(POSURES		
ARSENIC	6.29E-04	1.22E-03	2.80E+00	5.42E+00		
ALDRIN		1.95E-06				
BENZO(A)ANTHRACENE	4.04E-06	1.11E-05	_			
CHRYSENE	8.49E-06	1.65E-05		_		
TOTAL PCBs (ARCHLOR)	6.94E-05	1.46E-04				

TABLE 5-55
SUMMARY OF RISKS EXCEEDING NCP RISK GOALS FOR CARCINOGENS AND NONCARCINOGENS
OFF-SHORE RISK ASSESSMENT
PORTSMOUTH NAVAL SHIPYARD

	CARCINOG	ENIC RISK	NONCARCII	INOGENIC RISK	
	AVERAGE	MAXIMUM	AVERAGE		
TABLE 5-19					
CONSUMPTION OF MUSSELS CA			NS, RECREATIONAL EXPOSURES		
ARSENIC	3.06E-04	5.38E-04	1.36E+00	2.39E+00	
ALDRIN		1.07E-06	_		
HEPTACHLOR		1.09E-06	-	-	
TOTAL PCBs (AROCHLOR)	3.34E-05	4.06E-05	-	_	
TABLE 5-20 CONSUMPTION OF MUSSELS CA	UGHT AT THE GREAT I	BAY ESTUARY SAMPI	LE LOCATIONS, RECREATIONAL EXPO	SURES	
ARSENIC	6.07E-04	9.88E-04	2.70E+00	4.39E+00	
ALDRIN	1.42E-06	1.59E-06	-	_	
BENZO(A)ANTHRACENE	1.09E-05	2.21E-05	_	_	
BENZO(A)PYRENE	1.27E-05	2.21E-05	_	_	
CHRYSENE	1.68E-05	2.94E-05	_	_	
TOTAL PCBs (AROCHLOR)	2.20E-05	8.86E-05	_	_	
CONSUMPTION OF MUSSELS CA EXCLUDING SEAVEY ISLAND ANI					
ARSENIC	3.87E-03	5.23E-03	1.72E+01	2.32E+01	
CADMIUM				1.10E+00	
MERCURY			1.11E+00		
ALDRIN				1.57E+00	
ALPHA CHLORDANE	3.37E-05	1.50E-04	_	1.57E+00 -	
	3.37E-05 2.36E-06	1.50E-04 7.94E-06	_	1.57E+00 _	
HEXACHLOROBENZENE				1.57E+00 - -	
	2.36E-06	7.94E-06	-	1.57E+00 - - -	
HEXACHLOROBENZENE	2.36E-06 4.22E-06	7.94E-06 2.05E-05		1.57E+00 - - - -	
HEXACHLOROBENZENE p.p'- DDD	2.36E-06 4.22E-06 1.42E-06	7.94E-06 2.05E-05 5.34E-06	- - - -	1.57E+00 - - - -	
HEXACHLOROBENZENE p.p' – DDD p.p' – DDE	2.36E-06 4.22E-06 1.42E-06 2.19E-06	7.94E-06 2.05E-05 5.34E-06 8.24E-06	- - - -	- - - -	
HEXACHLOROBENZENE p.p' – DDD p.p' – DDE p.p' – DDT	2.36E-06 4.22E-06 1.42E-06 2.19E-06 1.81E-06	7.94E-06 2.05E-05 5.34E-06 8.24E-06 7.64E-06	- - - - -	——————————————————————————————————————	
HEXACHLOROBENZENE p.p' – DDD p.p' – DDE p.p' – DDT BENZO(A)ANTHRACENE	2.36E-06 4.22E-06 1.42E-06 2.19E-06 1.81E-06 4.57E-05	7.94E-06 2.05E-05 5.34E-06 8.24E-06 7.64E-06 1.00E-04	- - - - - -	- - - - -	

TABLE 5-55
SUMMARY OF RISKS EXCEEDING NCP RISK GOALS FOR CARCINOGENS AND NONCARCINOGENS
OFF-SHORE RISK ASSESSMENT
PORTSMOUTH NAVAL SHIPYARD

	CARCINOGE		NONCARCI	INOGENIC RISK	
TABLE 5-23	AVERAGE	MAXIMUM	AVERAGE		
CONSUMPTION OF MUSSELS CAL	JGHT AROUND SEAVEY	ISLAND FOR	SUBSISTENCE FISHING		
ARSENIC	2.95E-03	5.51E-03	1.31E+01	2.45E+01	
CADMIUM			1.17E+00	1.87E+00	
MERCURY				1.99E+00	
ALDRIN	6.82E-06	1.78E-05	-	-	
ALPHA-CHLORDANE	-	2.47E-06	_	-	
HEPTACHLOR EPOXIDE	_	5.37E-06	_	_	
LINDANE		1.26E-05	-	***	
p,p' DDD		1.27E-06			
p,p'- DDE		1.61E-06		· · · · · · · · · · · · · · · · · · ·	
p,p'- DDT	1.06E-06	5.62E-06	_		
CHRYSENE	5.05E-05	9.82E-05	_		
TOTAL PCBs (AROCHLOR)	3.53E-04	8.71E-04			
TABLE 5-24		<u> </u>			
THE PARTY OF THE P	IGHT AT CLARK'S ISI AI	ND FMRAYME	ENT SAMPLE LOCATIONS FOR SUBSISTENC	F FISUING	
ARSENIC	4.63E-03	8.98E-03	2.06E+01	3.99E+01	
CADMIUM			1.26E+00	1.58E+00	
MERCURY			1,202 100	1.05E+00	
ALDRIN	7.06E-06	1.43E-05	_	-	
ALPHA-CHLORDANE	1.63E-06	3.50E-06	_		
p,p'-DDD	1.43E-06	3.94E-06			
p,p'-DDE	1.37E-06	3.63E-06	_	-	
p,p'-DDT		1.82E-06	-		
BENZO(A)ANTHRACENE	2.98E-05	8.14E-05	_		
CHRYSENE	6.25E-05	1.22E-04	_		
TOTAL PCBs (AROCHLOR)	5.11E-04	1.08E-03			
TABLE 5-25					
CONSUMPTION OF MUSSELS CAU	GHT AT YORK HARBOR	SAMPLE LO	CATIONS FOR SUBSISTENCE FISHING		
ARSENIC	2.25E-03	3.96E-03	1.00E+01	1.76E+01	
CADMIUM			1.04E+00	1.17E+00	
MERCURY				1.23E+00	
ALDRIN	3.44E-06	7.85E-06			
ALPHA-CHLORDANE	1.17E-06	3.06E-06	_		
HEPTACHLOR	2.41E-06 l	8.U3E-U6:	- 1		
HEPTACHLOR p,p'- DDT	2.41E-06	8.03E-06 2.34E-06			

TABLE 5-55
SUMMARY OF RISKS EXCEEDING NCP RISK GOALS FOR CARCINOGENS AND NONCARCINOGENS
OFF-SHORE RISK ASSESSMENT
PORTSMOUTH NAVAL SHIPYARD

	CARCINOGENIC RISK		NONCARC	CINOGENIC RISK	
	AVERAGE	MAXIMUM	AVERAGE	MAXIMUM	
TABLE 5-26					
CONSUMPTION OF MUSSELS CAL		BAY ESTUARY S	AMPLE LOCATIONS FOR SUBSISTENCE F	ISHING	
ARSENIC	4.47E-03	7.27E-03	1.98E+01	3.23E+01	
CADMIUM			1.50E+00	2.29E+00	
MERCURY				1.03E+00	
ALDRIN	1.04E-05	1.17E-05	-	_	
ALPHA-CHLORDANE	2.18E-06	2.94E-06	_	_	
LINDANE		1.55E-06	_	_	
p,p' DDD		1.40E-06		_	
p,p'- DDE	1.91E-06	3.56E-06	_	_	
p,p'- DDT	· -	1.28E-06	_		
BENZO(A)ANTHRACENE	8.01E-05	1.62E-04	_	_	
BENZO(A)PYRENE	9.38E-05	1.62E-04	_	_	
CHRYSENE	1.24E-04	2.16E-04	-	_	
TOTAL PCBs (AROCHLOR)	1.62E-04	6.52E-04	,	-	
CONSUMPTION OF FLOUNDER FILE EXCLUDING SEAVEY ISLAND AND CL	L <mark>LET CAUGHT FROM L</mark> ARK'S ISLAND EMBAYME	NT, RECREATION	QUA SAMPLE LOCATIONS AL EXPOSURES		
ARSENIC	7.38E-04	·			
	7.30=-04	* 7.38E04	3.28E+00	* 3.28E+00	
ALDRIN	1.99E-06	7.38E-04 3.12E-06	3.28£+00	* 3.28E+00 -	
ALDRIN TOTAL PCBs (AROCHLOR)			3.28E+00	* 3.28E+00 - -	
TOTAL PCBs (AROCHLOR) TABLE 5-29	1.99E-06 3.51E-05	3.12E-06 4.50E-05	-		
	1.99E-06 3.51E-05	3.12E-06 4.50E-05	-		
TOTAL PCBs (AROCHLOR) TABLE 5-29	1.99E-06 3.51E-05	3.12E-06 4.50E-05	-		
TOTAL PCBs (AROCHLOR) TABLE 5–29 CONSUMPTION OF FLOUNDER FILLE ARSENIC	1.99E-06 3.51E-05 T CAUGHT AROUND SEA	3.12E-06 4.50E-05 VEY ISLAND, REC	REATIONAL EXPOSURES	<u>-</u>	
TOTAL PCBs (AROCHLOR) TABLE 5-29 CONSUMPTION OF FLOUNDER FILLE	1.99E-06 3.51E-05 T CAUGHT AROUND SEA 9.35E-04	3.12E-06 4.50E-05 VEY ISLAND, REC 9.71E-04	REATIONAL EXPOSURES	<u>-</u>	
TOTAL PCBs (AROCHLOR) TABLE 5-29 CONSUMPTION OF FLOUNDER FILLE ARSENIC ALDRIN HEPTACHLOR EPOXIDE	1.99E-06 3.51E-05 T CAUGHT AROUND SEA 9.35E-04 2.16E-06	3.12E-06 4.50E-05 VEY ISLAND, PEC 9.71E-04 3.23E-06	REATIONAL EXPOSURES	<u>-</u>	
TOTAL PCBs (AROCHLOR) TABLE 5-29 CONSUMPTION OF FLOUNDER FILLE ARSENIC ALDRIN HEPTACHLOR EPOXIDE HEXACHLOROBENZENE	1.99E-06 3.51E-05 T CAUGHT AROUND SEA 9.35E-04 2.16E-06	3.12E-06 4.50E-05 VEY ISLAND, REC 9.71E-04 3.23E-06 1.73E-06	REATIONAL EXPOSURES	<u>-</u>	
TOTAL PCBs (AROCHLOR) TABLE 5-29 CONSUMPTION OF FLOUNDER FILLE ARSENIC ALDRIN HEPTACHLOR EPOXIDE HEXACHLOROBENZENE TOTAL PCBs (AROCHLOR) TABLE 5-30	1.99E-06 3.51E-05 T CAUGHT AROUND SEA 9.35E-04 2.16E-06 1.15E-06	3.12E-06 4.50E-05 VEY ISLAND, REC 9.71E-04 3.23E-06 1.73E-06 1.22E-06 1.52E-04	REATIONAL EXPOSURES 4.15E+00	4.32E+00	
TOTAL PCBs (AROCHLOR) TABLE 5-29 CONSUMPTION OF FLOUNDER FILLE ARSENIC ALDRIN HEPTACHLOR EPOXIDE HEXACHLOROBENZENE TOTAL PCBs (AROCHLOR) TABLE 5-30 CONSUMPTION OF FLOUNDER FIL	1.99E-06 3.51E-05 T CAUGHT AROUND SEA 9.35E-04 2.16E-06 1.15E-06	3.12E-06 4.50E-05 VEY ISLAND, REC 9.71E-04 3.23E-06 1.73E-06 1.22E-06 1.52E-04	REATIONAL EXPOSURES	4.32E+00	
TOTAL PCBs (AROCHLOR) TABLE 5-29 CONSUMPTION OF FLOUNDER FILLE ARSENIC ALDRIN HEPTACHLOR EPOXIDE HEXACHLOROBENZENE TOTAL PCBs (AROCHLOR) TABLE 5-30	1.99E-06 3.51E-05 T CAUGHT AROUND SEA 9.35E-04 2.16E-06 1.15E-06 - 1.05E-04	3.12E-06 4.50E-05 VEY ISLAND, REC 9.71E-04 3.23E-06 1.73E-06 1.22E-06 1.52E-04	REATIONAL EXPOSURES 4.15E+00 4.15E+00 BAYMENT SAMPLE LOCATIONS, RECREATIONS	4.32E+00	
TOTAL PCBs (AROCHLOR) TABLE 5-29 CONSUMPTION OF FLOUNDER FILLE ARSENIC ALDRIN HEPTACHLOR EPOXIDE HEXACHLOROBENZENE TOTAL PCBs (AROCHLOR) TABLE 5-30 CONSUMPTION OF FLOUNDER FIL ARSENIC	1.99E-06 3.51E-05 T CAUGHT AROUND SEA 9.35E-04 2.16E-06 1.15E-06 - 1.05E-04 LET CAUGHT AT CLAF 7.66E-04	3.12E-06 4.50E-05 VEY ISLAND, REC 9.71E-04 3.23E-06 1.73E-06 1.22E-06 1.52E-04	REATIONAL EXPOSURES 4.15E+00 4.15E+00 BAYMENT SAMPLE LOCATIONS, RECREATIONS	4.32E+00	
TOTAL PCBs (AROCHLOR) TABLE 5-29 CONSUMPTION OF FLOUNDER FILLE ARSENIC ALDRIN HEPTACHLOR EPOXIDE HEXACHLOROBENZENE TOTAL PCBs (AROCHLOR) TABLE 5-30 CONSUMPTION OF FLOUNDER FIL ARSENIC TOTAL PCBs (AROCHLOR)	1.99E-06 3.51E-05 T CAUGHT AROUND SEA 9.35E-04 2.16E-06 1.15E-06 - 1.05E-04 LET CAUGHT AT CLAF 7.66E-04 9.89E-05	3.12E-06 4.50E-05 VEY ISLAND, REC 9.71E-04 3.23E-06 1.73E-06 1.22E-06 1.52E-04 RK'S ISLAND EM 9.10E-04 1.95E-04	REATIONAL EXPOSURES 4.15E+00 4.15E+00 BAYMENT SAMPLE LOCATIONS, RECREATIONS	4.32E+00 4.32E+00 FIONAL EXPOSURES 4.04E+00	

TABLE 5-55
SUMMARY OF RISKS EXCEEDING NCP RISK GOALS FOR CARCINOGENS AND NONCARCINOGENS
OFF-SHORE RISK ASSESSMENT
PORTSMOUTH NAVAL SHIPYARD

MOTE .. * - AVEDAGE COMOENTRATION EQUAL C MAYIMUM CONCENTRATION, DAGED ON A DINICLE CAMBRIE

		ENIC RISK	NONCARC	NOGENIC RISK
	AVERAGE	MAXIMUM		MAXIMUM
TABLE 5-33				
CONSUMPTION OF FLOUNDER FILLET	CAUGHT FROM L	OWER PISCAT	FAQUA SAMPLE LOCATIONS	
EXCLUDING SEAVEY ISLAND AND CLA			SUBSISTENCE FISHING	
ARSENIC	5.43E-03	* 5.43E-03	2.41E+01	* 2.41E+01
ALDRIN	1.46E-05	2.30E-05	_	_
HEPTACHLOR	1.56E-06	* 1.56E-06	_	_
p,p'- DDT	2.20E-06	4.21E-06	-	_
TOTAL PCBs (AROCHLOR)	2.58E-04	3.31E-04	-	_
TABLE 5-34				
CONSUMPTION OF FLOUNDER FILLET	CAUGHT ARQUNI	D SEAVEY ISL	AND FOR SUBSISTENCE FISHING	
ARSENIC	6.88E-03	7.14E-03	3.06E+01	3.18E+01
ALDRIN	1.59E-05	2.38E-05		
ALPHA-CHLORDANE	1.21E-06	1.82E-06	-	
HEPTACHLOR	4.20E-06	6.30E-06	-	_
HEPTACHLOR EPOXIDE	8.49E-06	1.27E-05		_
HEXACHLOROBENZENE	5.97E-06	8.96E-06	_	
LINDANE	1.21E-06	1.82E-06	-	
MIREX	1.68E-06	2.52E-06		
p,p'- DDE	2.78E-06	4.20E-06		
TOTAL PCBs (AROCHLOR)	7.69E-04	1.12E-03		
TABLE 5-35			N.A	
	CAUGHT AT CLAS	RK'S ISLAND F	MBAYMENT SAMPLE LOCATIONS FOR SUB	PICTEMOE FICHING
ARSENIC	5.63E-03	6.69E-03	2.50E+01	2.98E+01
ALDRIN	4.78E-06	5.95E-06	2.305+01	2.902+01
ALPHA-CHLORDANE	1.09E-06	2.58E-06		
HEPTACHLOR	1.27E-06	1.57E-06		
HEPTACHLOR EPOXIDE	2.56E-06	3.18E-06		
HEXACHLOROBENZENE	2.07E-06	4.38E-06		
p,p'- DDD		1.55E-06		
p,p'- DDE	3.32E-06	7.48E-06		
TOTAL PCBs (AROCHLOR)	7.28E-04	1.43E-03		
TABLE 5-36		30		
BONG TRANSPORT (1977년 1984년 CAUGHT AT YORK	CHARROR SAI	MPLE LOCATIONS FOR SUBSISTENCE FISH	NG PER CALL THE	
ALPHA-CHLORDANE	1.18E-06	±		
OTAL PCBs (AROCHLOR)	2.43E-04	*		
ABLE 5-44	2.132 04	<u>-</u>		
DERMAL CONTACT WITH SEDIMENT FI	ROM AROUND SEA	VEV ISLAND		
CUMULATIVE CARCINOGENIC RISK	ISIN AIROUND GLA	2.89E-06		

TABLE 5-56
POTENTIAL COMBINED RISKS CALCULATED FOR COMBINED PATHWAYS OF INGESTION OF MUSSELS AND DERMAL CONTACT WITH SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR RECREATIONAL FISHING RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	SPECIFIC RI	ENIC CHEMICAL SKS FOR OF MUSSELS	NONCARCING CHEMICAL SI RISKS FOR INGESTION C	PECIFIC	CARCINOGE CHEMICAL SPECIFIC RI DERMAL CO WITH SEDIM	SKS FOR NTACT	NONCARC CHEMICAL RISKS FOR DERMAL C WITH SEDI	SPECIFIC I ONTACT	SPECIFIC R	ISKS FOR OF MUSSELS AL CONTACT	COMBINED IN CARCHING SPECIFIC RIG INGESTION OF AND DERMAL WITH SEDIM	ENIC CHEMICAL BKS FOR DF MUSSELS L CONTACT
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
INORGANICS	<u> </u>											
ALUMINUM	_	-	7.64E-03	1.50E-02	-	_	_	-	-	_	7.64E-03	1.50E-02
ARSENIC	4.80E-04	1.22E-03	2.13E+00	5.42E+00	_	_		_	4.80E-04	1.22E-03	2.13E+00	5.42E+00
CADMIUM	-	-	1.53E-01	2.54E-01	_	_	3.11E-06	1.07E-05	_	-	1.53E-01	2.54E-01
CHROMIUM	_	_	5.95E-02	8.94E-02	_	_	_	-	1 -	=	5.95E-02	8,94E-02
COPPER	-	_	1.67E-02	6.33E-02	_	_	_	_	_		1.67E-02	6.33E-02
IRON	_	_	-		_	_		_	-	_	_	-
LEAD	_	_	-	_	_	-	_	_	-	-	_	<u> </u>
MANGANESE	-	-	1.28E-02	6.02E-02	-	_	-	_	_	-	1.28E-02	6.02E-02
MERCURY	_	_	1.15E-01	2.70E-01	_	_	_	_	-	_	1.15E-01	2.70E-01
NICKEL	_		7.76E-03	1.73E-02	_	_	_	_	_	-	7.76E-03	1.73E-02
SILVER	_	-	6.37E-03	6.03E-02		_	_		_	_	6.37E-03	6.03E-02
ZINC	-	-	4.63E-02	9.28E-02	_	-	-	_	_	-	4.63E-02	9.28E-02
PESTICIDES												
ALDRIN	1.48E-06	2.03E-05	6.78E-03	9.30E-02	_	-		_	1'.48E-06	2.03E-05	6.78E-03	9.30E-02
ALPHA-CHLORDANE	1.63E-07	1.08E-06	4.87E-03	3.23E-02	-	-	†	_	1.63E-07	1.08E-06	4.87E-03	3.23E-02
HEPTACHLOR	9.27E-08	3.00E-08	9.62E-05	3.11E-05	-	_	_	_	9.27E-08	3.00E-08	9.62E-05	3.11E-05
HEPTACHLOR EPOXIDE	1.04E-07	7.30E-07	2.05E-03	1.44E-02	-	-	_	-	1.04E-07	7.30E-07	2.05E-03	1.44E-02
HEXACHLOROBENZENE	1.14E-07	2.78E-06	2.07E-04	5.07E-03	_	_	-	_	1.14E-07	2.78E06	2.07E-04	5.07E-03
LINDANE (GAMMA-BHC)	7.09E-08	1.71E-06	4.24E-04	1.02E-02	_	_	1 -	-	7.09E-08	1.71E-06	4.24E-04	1.02E-02
MIREX	4.74E-08	8.50E-08	3.07E-04	5.51E-04	-	-	i -	-	4.74E-08	8.50E-08	3.07E-04	5.51E-04
TRANS-NONACHLOR	_	-	_	-		_	T -	-		-	_	-
o,p'-DDD		-	_		-	1		-			_	-
o,p'-DDE	-	_		-	-	_		-	-	-	_	-
o,p'-DDT		-		-	_			_		-		_
p.p'-DDD	1.14E-07	7.26E-07		-	_	-	-	-	1.14E-07	7.26E-07	-	-
p,p'-DDE	1.58E-07	1.12E-06		-	_		_	-	1.58E-07	1.12E-06	-	-
p,p'-DDT	1.49E-07	1.04E-08	2.04E-03	1.42E-02	-	_	<u> </u>		1.49E-07	1.04E-06	2.04E-03	1.42E-02

ND - NO DATA AVAILABLE

AN EXPOSURE SENARIO WAS NOT CALCULATED FOR DERMAL CONTACT WITH SURFACE WATER SINCE SURFACE WATER SAMPLES, WERE ONLY ANALYZED FOR INORGANAICS AND CADMIUM WAS NOT DETECTED IN SURFACE WATER SAMPLES,

TABLE 5-56
POTENTIAL COMBINED RISKS CALCULATED FOR COMBINED PATHWAYS OF INGESTION OF MUSSELS AND DERMAL CONTACT WITH SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR RECREATIONAL FISHING RECREATIONAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	SPECIFIC R	NIC CHEMICAL	NONCARCING CHEMICAL SE RISKS FOR INGESTION O	PECIFIC	CARCINOGE CHEMICAL SPECIFIC RIS DERMAL COI WITH SEDIM	SKS FOR NTACT	NONCARCI CHEMICAL RISKS FOR DERMAL CO WITH SEDII	SPECIFIC ONTACT	SPECIFIC R	ISKS FOR OF MUSSELS AL CONTACT	COMBINED N CARCNINOGI SPECIFIC RIS INGESTION C AND DERMAL WITH SEDIME	ENIC CHEMICAL IKS FOR IF MUSSELS , CONTACT
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS												
ANTHRACENE	-	-	2.83E-06	1.60E-05	-		-	-		-	2.83E-06	1.60E05
BENZO(A)ANTHRACENE	3.80E-06	1.36E-05	-	-	-	-	_	-	3.80E-06	1.36E-05	-	_
BENZO(A)PYRENE	2.47E-06	8.38E-06	-	-		_	-	-	2.47E-06	8.38E-06	_	
BENZO(E)PYRENE	_	_	_	-	-	-	_	-	-	-	-	-
CHRYSENE	7.73E-06	1.74E-05	-	-	-	-	_	-	7.73E-06	1.74E-05	_	-
FLUORANTHENE	-	_	1.84E-04	4.99E-04	-	-	-	-]	-	1.84E-04	4.99E-04
PERYLENE	_	-	_	_	-	_	_	_	_	-	_	-
PHENANTHRENE	-	-	6.53E-04	2.44E-03	-	-	-	-		-	6.53E-04	2.44E-03
PYRENE	-	_	2.34E-04	5.92E-04	-	-		-	-	-	2.34E-04	5.92E-04
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	5.26E-05	1.47E-04	-	_	3.54E-09	1.85E-08	-	•	5.26E-05	1.47E-04	_	_
CUMULATIVE TOTALS:	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
	5.49E-04	1.44E-03	2.58E+00	6.52E+00	3.54E-09	1.85E-08	3.11E-06	1.07E-05	5.49E-04	1.44E-03	2.58E+00	6.52E+00

ND - NO DATA AVAILABLE

AN EXPOSURE SENARIO WAS NOT CALCULATED FOR DERMAL CONTACT WITH SURFACE WATER SAMPLES. WERE ONLY ANALYZED FOR INORGANAICS AND CADMIUM WAS NOT DETECTED IN SURFACE WATER SAMPLES.

TABLE 5-57
POTENTIAL COMBINED RISKS CALCULATED FOR COMBINED PATHWAYS OF INGESTION OF MUSSELS AND DERMAL CONTACT WITH SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	SPECIFIC RI	ENIC CHEMICAL SKS FOR OF MUSSELS	NONCARCING CHEMICAL SERISKS FOR INGESTION C	PECIFIC	CARCINOGI CHEMICAL SPECIFIC RI DERMAL CO WITH SEDIN	ISKS FOR INTACT	NONCARC CHEMICAL RISKS FOR DERMAL C WITH SEDI	SPECIFIC L ONTACT	SPECIFIC R	OF MUSSELS AL CONTACT	COMBINED N CARCNINGG SPECIFIC RIS INGESTION C AND DERMAL WITH SEDIME	ENIC CHEMICAL IKS FOR OF MUSSELS . CONTACT
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
INORGANICS												
ALUMINUM	_		1.87E-02	3.68E-02	_	-	-	-	-	_	1.87E-02	3.68E-02
ARSENIC	1.17E-03	2.98E-03	5.21E+00	1.33E+01	_	_	_	-	1.17E-03	2.98E-03	5.21E+00	1.33E+01
CADMIUM	-	-	3.73E-01	6.21E-01	-	_	3.11E-06	1.07E-05	_	-	3.73E-01	6.21E-01
CHROMIUM	-	-	1.45E-01	2.18E-01	-	-	_	_	_		1.45E-01	2.18E-01
COPPER	_	_	4.07E-02	1.55E-01	-	1 _	-	_		_	4.07E-02	1.55E-01
IRON	_	-	-	_	_	1	_		_	<u> </u>		
LEAD	_	_	-	_	_	_	-	_	 		_	
MANGANESE		_	3.14E-02	1.47E-01	_				t	† <u>-</u>	3.14E-02	1.47E-01
MERCURY	_	_	2.80E-01	6.61E-01	_	_			 	<u> </u>	2.80E-01	6.61E-01
NICKEL	_		1.90E-02	4.23E-02			 	_	 	<u> </u>	1.90E-02	4.23E-02
SILVER	_	_	1.56E-02	1.47E-01	_		† <u> </u>	<u> </u>	 		1.56E-02	1.47E-01
ZINC		_	1.13E-01	2.27E-01			<u> </u>	_		 	1.13E-01	2.27E-01
PESTICIDES					1		1				1.10L-01	2.276-01
ALDRIN	3.62E-06	4.97E-05	1.66E-02	2.27E-01	_	_			3:62E-06	4.97E-05	1.66E-02	2.27E-01
ALPHA-CHLORDANE	3.98E-07	2.64E-06	1.19E-02	7.89E-02	<u> </u>	_		_	3.98E-07	2.64E-06	1.19E-02	7.89E-02
HEPTACHLOR	2.27E-07	7.32E-08	2.35E-04	7.59E-05			_		2.27E-07	7.32E-08	2.35E-04	7.59E-05
HEPTACHLOR EPOXIDE	2.54E-07	1.78E-06	5.01E-03	3.52E-02	_	_	_	-	2.54E-07	1.78E-06	5.01E-03	3.52E-02
HEXACHLOROBENZENE	2.78E-07	6.80E-06	5.06E-04	1.24E-02	_	-	 -		2.78E-07	6.80E-06	5.06E-04	1.24E-02
LINDANE (GAMMA-BHC)	1.73E-07	4.17E-06	1.04E-03	2.50E-02	-	_	-		1.73E-07	4.17E-06	1.04E-03	2.50E-02
MIREX	1.16E-07	2.08E-07	7.50E-04	1.35E-03	-	-	 	-	1.16E-07	2.08E-07	7.50E-04	1.35E-03
TRANS-NONACHLOR	-	-	_	_	_	-	-	-	-	-	-	
o,p'-DDD		_	_	-	-	-	-	_	-	-		_
o,p'-DDE		- :		-	-	-	-	-	_	-	-	
o,p'-DDT		-		-	_	-	_	-	_	_	_	-
p,p'-DDD	2.80E-07	1.78E-06	_	_		-		-	2.80E-07	1.78E-06	_	_
p,p'-DDE	3.87E-07	2.74E-08		-		-	-	-	3.87E-07	2.74E-06	. –	-
p,p'-DDT	3.64E-07	2.54E-06	4.99E-03	3.48E-02	-	-			3.64E-07	2.54E-06	4.99E-03	3.48E-02

ND - NO DATA AVAILABLE

AN EXPOSURE SENARIO WAS NOT CALCULATED FOR DERMAL CONTACT WITH SURFACE WATER SINCE SURFACE WATER SAMPLES.

TABLE 5-57
POTENTIAL COMBINED RISKS CALCULATED FOR COMBINED PATHWAYS OF INGESTION OF MUSSELS AND DERMAL CONTACT WITH SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS FOR SUBSISTENCE FISHING RESIDENTIAL EXPOSURES, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	SPECIFIC RI	ENIC CHEMICAL SKS FOR OF MUSSELS	NONCARCING CHEMICALS RISKS FOR INGESTION (PECIFIC	CARCINOGE CHEMICAL SPECIFIC RI DERMAL CO WITH SEDIM	SKS FOR NTACT	NONCARCI CHEMICAL RISKS FOR DERMAL CO WITH SEDII	SPECIFIC	SPECIFIC R	ENIC CHEMICAL ISKS FOR OF MUSSELS AL CONTACT	COMBINED N CARCNINGG SPECIFIC RIS INGESTION C AND DERMAL WITH SEDIMI	ENIC CHEMICAL BKS FOR OF MUSSELS CONTACT
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS	·						•					
ANTHRACENE	-	-	6.91E-06	3.91E-05	-	-	-	-	_	-	6.91E-06	3.91E-05
BENZO(A)ANTHRACENE	9.28E-06	3.33E-05	-	-	_	-	-	-	9.28E-06	3.33E-05	_	_
BENZO(A)PYRENE	6.03E-06	2.05E-05	-	-	-	-	-	-	6.03E-06	2.05E-05	-	_
BENZO(E)PYRENE	_	_	_	-	-	_	-	-		_	_	_
CHRYSENE	1.89E-05	4.26E-05	_	_	_	_	-	-	1.89E-05	4.26E-05	-	_
FLUORANTHENE	_	_	4.50E-04	1.22E-03	_	_	_		_	-	4.50E-04	1.22E-03
PERYLENE	_	-	_	_	_	_	_	-	-	-	-	-
PHENANTHRENE	-		1.60E-03	5.97E-03	_	-	_	-	_	-	1.60E-03	5.97E-03
PYRENE	T -		5.72E-04	1.45E-03	-	-	-	-	_	_	5.72E-04	1.45E-03
POLYCHLORINATED BIPHENYLS (PCBs)												
TOTAL PCBs (AROCHLOR)	1.28E-04	3.58E-04	_		3.54E-09	1.85E-08		-	1.28E-04	3.58E-04	-	_
CUMULATIVE TOTALS:	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
	1.34E-03	3.51E-03	6.30E+00	1.59E+01	3.54E-09	1.85E-08	3.11E-06	1.07E-05	1.34E-03	3.51E-03	6.30E+00	1,59E+01

ND - NO DATA AVAILABLE

AN EXPOSURE SENARIO WAS NOT CALCULATED FOR DERMAL CONTACT WITH SURFACE WATER SAMPLES. WERE ONLY ANALYZED FOR INORGANAICS AND CADMIUM WAS NOT DETECTED IN SURFACE WATER SAMPLES.

TABLE 5-58
POTENTIAL COMBINED RISKS CALCULATED FOR COMBINED PATHWAYS OF INGESTION OF SURFACE WATER AND SEDIMENT AND DERMAL CONTACT WITH SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING, AND WADING IN THE RIVER, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	CARCINO	L SPECIFIC R N OF	NON- CARCINOG CHEMICAL SPECIFIC R FOR INGES OF SEDIME	esks Tion	CARCINO CHEMICAL SPECIFIC FOR DERM CONTACT WITH SED	L RISKS MAL	NON- CARCINOGI CHEMICAL RISKS FOR DERMAL CO WITH SEDIM	SPECIFIC DNTACT	CARCINO CHEMICA SPECIFIC RISKS FOI INGESTIO SURFACE	R N OF	NON- CARCINO CHEMICA SPECIFIC RISKS FO INGESTIO SURFACE	R NOF	COMBINED CARCINOGI CHEMICAL RISKS FOR OF SEDIME SURFACE V DERMAL CO	SPECIFIC INGESTION NT AND VATER AND INTACT	COMBINED NONCARCING CHEMICAL IS RISKS FOR IT OF SEDIMEN SURFACE W/ DEFMAL COM WITH SEDIEM	PECIFIC IGESTION T AND ATER AND
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
INORGANICS														1 1	A COLOR OF PROPERTY	A STATE OF THE STA
ALUMINUM	_	_	3.18E-04	7.36E-04	-		-	-	-	T -	4.29E-07	2.00E-08	_	-	3.18E-04	7.38E-04
ARSENIC	2.53E-07	5.90E-07	1.12E-03	2.62E-03	-	_	_	-	-	1 -		_	2.53E-07	5.90E-07	1.12E-03	2.62E-03
CADMIUM	-	-	1.59E-05	5.48E-05	_	_	3.11E-06	1.07E-05	-		-	_	-	-	1.90E-05	6.55E-05
CHROMIUM	-	-	5.97E-04	1.16E-03	_	_	-	_	_	ļ .		_	_	_	5.97E-04	1.16E-03
COPPER	-	_	3.20E-05	7.77E-05	-	-	-		_	 	_	_	_		3.20E-05	7.77E-05
IRON	_	-		_	_	ļ .	_	_		 		_	_	-	<u> </u>	
LEAD	-	-	_	_	ļ	-	_	_	_	<u> </u>		_	_			-
MANGANESE	-	_	8.36E-05	1.48E-04	_	-	-	_	-	<u> </u>	-	_			8.36E-05	1.48E-04
MERCURY	-	-	2.05E-05	6.12E-05	_	-	_	-	ļ .	†		_	_	_	2.05E-05	6.12E-05
NICKEL	-	_	3.82E-05	1.25E-04	† -	-	-	_	_	<u> </u>			-	_	3.82E-05	1.25E-04
SILVER	_		3.25E-06	7.12E-06		† _	 	_	_	_		_	_	_	3.25E-06	7.12E-06
ZINC	_	_	1.73E-05	7.26E-05	_	 	-	_	_	١ .		_	_	_	1.73E-05	7.26E-05
PESTICIDES										1						
ALDRIN	3.35E-10	4.47E-09	1.53E-06	2.05E-05	_	_	_	_	_	1 -		_	3.35E-10	4.47E-09	1.53E-06	2.05E-05
ALPHA-CHLORDANE	1.05E-11	4.46E-11	3.13E-07	1.33E-06	† <u> </u>	 	 -	_	-	 		-	1.05E-11	4.46E-11	3.13E-07	1.33E-06
HEXACHLOROBENZENE	1.13E-11	1.35E-10	2.06E-08	2.47E-07	-	-	_	_	-	_	-	_	1.13E-11	1.35E-10	2.06E-08	2.47E-07
LINDANE (GAMMA-BHC)	6.20E-12	1.62E-11	3.71E-08	9.72E-08	-	_	-	-		1 -		-	6.20E-12	1.62E-11	3.71E-08	9.72E-08
MIREX	9.43E-12	3.59E-11	6.11E-08	2.33E-07	-	-		-	-	-	_	_	9.43E-12	3.59E-11	6.11E-08	2.33E-07
TRANS-NONACHLOR	-	-		-	-	_	_	-	-	<u> </u>	-	_	-	-	_	_
o,p'-DDD			-				-		=		-	-		-	_	-
o,p'-DDE		-		_		_	_			-	-	-	-	-	-	-
o,p'-DDT	-	-	-	-	-	_		_	-		_	_	-	-	-	-
p.p'-DDD	1.24E-11	5.38E-11		-	-	-	-	-	-				1.24E-11	5.38E-11	_	_
p,p'-DDE	9.24E-12	2.55E-11			-	-	-		=	-	-		9.24E-12	2.55E-11	-	•
p,p'-DDT	5.05E-11	4.77E-10	6.93E-07	6.55E-06			<u> </u>	-	<u> </u>	<u> </u>		-	5.05E-11	4.77E-10	6.93E-07	6.55E-06

ND - NO DATA AVAILABLE

AN EXPOSURE SENARIO WAS NOT CALCULATED FOR DERMAL CONTACT WITH SURFACE WATER SINCE SURFACE WATER SAMPLES, WERE ONLY ANALYZED FOR INORGANAICS AND CADMIUM WAS NOT DETECTED IN SURFACE WATER SAMPLES,

TABLE 5-58
POTENTIAL COMBINED RISKS CALCULATED FOR COMBINED PATHWAYS OF INGESTION OF SURFACE WATER AND SEDIMENT AND DERMAL CONTACT WITH SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING, AND WADING IN THE RIVER, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	CARCINO	L SPECIFIC R N OF	NON- CARCINOGE CHEMICAL SPECIFIC RI FOR INGEST OF SEDIME	SKS TION	CARCINOX CHEMICAL SPECIFIC FOR DERM CONTACT WITH SED	BENIC RISKS (AL	NON- CARCINOGE CHEMICAL I RISKS FOR DERMAL CO WITH SEDIM	SPECIFIC INTACT	CARCINOS CHEMICAL SPECIFIC FUSICS FOR INGESTION SURFACE	1 NOF	NON- CARCINOX CHEMICAL SPECIFIC FISKS FOI INGESTION SURFACE	3 N OF	COMBINED CARCINOGI CHEMICAL RISKS FOR OF SEDIME SURFACE V DERMAL CO WITH SEDIE	ENIC SPECIFIC INGESTION NT AND WATER AND ONTACT	COMBINED NONCARCING CHEMICAL SF RISKS FOR IN OF SEDIMENT SURFACE WA DERMAL CON WITH SEDIEM	YECIFIC IGESTION I' AND TER AND ITACT
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	DVA	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
POLYAROMATIC HYDROCARBONS																
ANTHRACENE	-	_	2.20E-08	1.74E-07	-	-	_	-	-	_	-	-	-	-	2.20E08	1.74E-07
BENZO(A)ANTHRACENE	3.28E-08	2.45E-07	-	-	-	_	-		_	-		-	3.28E-08	2.45E-07		-
BENZO(A)PYRENE	3.28E-08	1.57E-07	-	-	_	-		-	-	_	-	-	3.28E-08	1.57E-07	_	-
BENZO(E)PYRENE	_	_	_	-	_		-	_	-	-	-	-		-	-	
BENZO(G,H,I)PERYLENE	-	_	1.33E-06	4.52E-06	-	_	-	_	-	-	_	_	-	_	1.33E-06	4.52E-06
CHRYSENE	3.31E-08	2.18E-07	_	_	-	-	-	_	_	_	<u> </u>		3.31E-08	2.18E-07	_	-
DIBENZO(A,H)ANTHRACENE	3.89E-09	1.63E-08	_	-	_	_	-	-	-	-	_	-	3.89E-09	1.63E-08	-	-
FLUORANTHENE			7.81E-07	9.69E-06	-	-	-	-	_	-	_	_	-	_	7.81E-07	9.59E-06
FLUORENE		-	5.25E-08	7.53E-07	_	_	-	_	<u> </u>	_	_	_		_	5.25E-08	7.53E-07
INDENO(1,2,3-CD)PYRENE	1.47E-08	6.47E-08	_	_	-	<u>-</u>	-	-	-	_	_	-	1.47E-08	6.47E-08	_	_
PERYLENE		_	_	_	_	_	-	-	_	-	-	-	_	_	-	-
PHENANTHRENE	-	-	4.29E06	4.25E-05	-	-	-	-	-	-	-		-	-	4.29E-06	4.25E-05
PYRENE		_	8.93E-07	9.13E-06	_	-	-	_			-	-		_	8.93E-07	9.13E-06
POLYCHLORINATED BIPHENYLS (PCBs)																
TOTAL PCBs (AROCHLOR)	6.06E-09	3.14E-08	_		3.54E-09	1.85E-08	_		-	_	_	-	9.60E-09	4.99E-08	-	_
CUMULATIVE TOTALS:	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
	3.76E-07	1.33E-06	2.26E-03	5.16E-03	3.54E-09	1.85E-08	3.11E-06	1.07E05	_	_	4.29E-07	2.00E-06	3.80E-07	1.35E-06	2.26E-03	5.17E-03

ND - NO DATA AVAILABLE

AN EXPOSURE SENARIO WAS NOT CALCULATED FOR DERMAL CONTACT WITH SURFACE WATER SINCE SURFACE WATER SAMPLES. WERE ONLY ANALYZED FOR INORGANAICS AND CADMIUM WAS NOT DETECTED IN SURFACE WATER SAMPLES.

TABLE 5-59
POTENTIAL COMBINED RISKS CALCULATED FOR COMBINED PATHWAYS FOR INGESTION OF SEDIMENT, SURFACE WATER, AND LOBSTER TAIL FLESH AND DERMAL CONTACT WITH SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING, AND WADING IN THE RIVER, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	CARCINOS CHEMCAL FIISKS FOF INGESTION SEDIMENT	BPECIFIC N OF	NON- CARCINOS CHEMICAL SPECIFIC I FOR INGES	risks Etion Ent	CARCINO CHEMICA SPECIFIC FOR DERI CONTACT WITH SED	RISKS AAL	MON- CARCINOX CHEMICAL RISKS FOF DERIMAL C WITH REDI	SPECIFIC ONTACT MENT	CARCINO CHEMICA SPECIFIC RISKS PO INGESTIO BURFACE	R N'OF WATER	NON- CARCINO CHEMICAL BPECIFIC RIBKS FOI INGESTION SURFACE	R N OF WATER		i of TAIL FLESH		N OF TAIL FLESH	COMBINEI CARCINOC CHEMICAL RISKS	BENIC SPECIFIC	COMBINED NONCARCIN CHEMICAL B RISKS	PECIFIC
INORGANICS	EVA	MAX	DVA	MAX	AVG	MAX	AVG	MAX	AVO	MAX	DVA	MAX	AVG	MAX	AVG	MAX	AV9	MAX	AVQ	MAX
ALUMINUM	_	_	3.18E-04	7.36E-04	_	_		_	i _		- 4.29E-07	2.00E-06	_		1.72E-03	4.67E-03			2.03E-03	5.41E-03
ARSENIC	2.53E~07	5.90E-07	1.12E-03	2.62E-03		† -		 	<u> </u>	 		1 -	1.50E-03	2.92E-03	6.66E+00	1.30E+01	1.50E-03	2.92E-03	8.66E+00	1.30E+01
CADMIUM	-	_	1.59E-05	5.48E-05		 	3.11E-06	1.07E-05	 -	 	. 	 	1.552.50		4.37E-03	6.06E-03	1.502.503	2.342-03	4.39E-03	8.13E-03
CHROMIUM	-	-	5.97E-04	1.16E-03	_	 	1 -	_	<u> </u>	 	. 	 	-	 	2.54E-02	3.65E-02		 	2.60E-02	3.77E-02
COPPER	† -	_	3.20E-05	7.77E-05	-	 	 	-	_			 	 	 	1.07E-01	1.17E-01	 	 	1.07E-01	1.17E-01
IRON		 	-	-	_	 	 	 		 		 	_		1.072-01	1.172-01	-	-	1.072-01	1.172-01
LEAD	† <u>-</u>	† <u>-</u>					·	 _	<u> </u>	<u> </u>	. 				 	 	 		 	
MANGANESE	 	 _	8.36E-05	1.48E-04		 		<u> </u>	 	 		 	 	 	5.08E-03	7.87E-03	 		5.16E-03	8.01E-03
MERCURY	† <u>-</u>	 	2.05E-05	6.12E-05		 _	 -	_	 _			<u> </u>		 -	6.70E-01	8.60E-01	 	<u> </u>	6.70E-01	8.60E-01
NICKEL.	 	-	3.82E-05	1.25E-04	_		<u> </u>	 	 	 		 -	<u> </u>	 	4.37E-03	9.48E-03		_	4.41E-03	9.60E-03
SILVER	 	_	3.25E-06	7.12E-06	-	 	t _		<u> </u>			 		 	2.13E-02	3.34E-02	-	<u> </u>	2.13E-02	3.34E-02
ZINC	_	_	1.73E-05	7.26E-05		† <u> </u>	_		-	 		 	<u> </u>		6.31E-02	7.40E-02	 	 	6.31E-02	7.41E-02
PESTICIDES.		1.								1			1		0.012-02	7.402-02		_	0.31E-02	7.41E-02
ALDRIN	3.35E-10	4.47E-09	1.53E-06	2.05E-05	-	_		_	_				9.18E-07	1.92E-06	4.19E-03	8.80E-03	9.17E-07	1.93E-06	4.19E-03	8.82E-03
ALPHA-CHLORDANE	1.05E-11	4.46E-11	3.13E-07	1.33E-06		-	_	-	_	<u> </u>		 	5.81E-08	9.46E-08	1.74E-03	2.83E-03	5.81E-08	9.46E-08	1.74E-03	2.83E-03
HEPTACHLOR	-	-	-	-		-	_	_	-	<u> </u>	-	-	1.71E-07	2.20E-07	1.78E-04	2.28E-04	1.71E-07	2.20E-07	1.78E-04	2.28E-04
HEPTACHLOR EPOXIDE	-	-	-	-	-	-	-	-	-	ļ -	. -	-	5.01E-07	1.42E-06	9.88E-03	2.81E-02	5.01E-07	1.42E-06	9.88E-03	2.81E-02
HEXACHLOROBENZENE	1.13E-11	1.35E-10	2 06E-08	2.47E-07	_	-	_	-	-	-	-	-	2.13E-07	3.01E-07	3.88E-04	5.49E-04	2.13E-07	3.01E-07	3.88E-04	5.49E-04
LINDANE (GAMMA-BHC)	6.20E-12	1.62E-11	3.71E-08	9.72E-08	-		-	_	-			-	6.50E-08	1.67E-07	3.89E-04	1.12E-03	6.51E-08	1.87E-07	3.89E-04	1.12E-03
MIREX	9.43E-12	3.59E-11	6.11E-08	2.33E-07		-	-	-	_		-		7.17E-08	8.79E-08	4.65E-04	5.70E-04	7.18E-08	8.79E-08	4.65E-04	5.70E-04
TRANS-NONACHLOR	-	-	-	_	-	-			_		-		-	_	-	-	-	-	_	_
o,p'-DDD						-		-	-		-		=	-	-	-	-	-	-	
o,p'~DDE			-	-		-	<u> </u>		-	<u> </u>	-	<u> </u>	-		-		_	-		
o,p'-DDT	<u> </u>			-			_	-	-	ļ	· <u> </u> -	<u> </u>			-	-		-		
p,p'-DD0	1.24E-11	5.38E-11		-			-			 	 -	-	1.45E-08	2.57E-08		-	1.45E-08	2.58E-08		
p,p'-DDE	9.24E-12	2.55E-11	-				-	<u> </u>		-	-	<u> </u>	7.98E-08	1.45E-07			7.98E-08	1.45E-07		
p.p'-DDT	5.05E-11	4.77E-10	6.93E-07	6.55E-06		<u> </u>	-	<u> </u>	-	_		-	5.39E-08	2.34E-07	7.40E-04	3.21E-03	5.39E-08	2.34E-07	7.40E-04	3.21E-03

TABLE 5-59
POTENTIAL COMBINED RISKS CALCULATED FOR COMBINED PATHWAYS FOR INGESTION OF SEDIMENT, SURFACE WATER, AND LOBSTER TAIL FLESH AND DERMAL CONTACT WITH SEDIMENT FROM THE LOWER PISCATAQUA SAMPLE LOCATIONS
RECREATIONAL EXPOSURES WHILE SWIMMING, FISHING, AND WADING IN THE RIVER, OFF-SHORE IMPACTS
PORTSMOUTH NAVAL SHIPYARD

	CARCINOS CHEMICAL RISKS FOR INGESTION SEDIMENT	SPECIFIC	NON- CARCINO CHEMICAL SPECIFIC I FOR INGE: OF SECHME	iisks Mon	CARCINOS CHEMICAL SPECIFIC FOR DERN CONTACT WITH SEDI	Alsks IAL	NON- CARCINO CHEMICA RISKS FO DERMAL (L SPECIFIC FI CONTACT	CARCINOS CHEMICAL SPECIFIC RISKS POF INGESTION SURFACE	l NOF	NON- CARCINO CHEMICA SPECIFIC RISKS FOI INGESTIO SURFACE	R MOF	CARCINO CHEMICAL SPECIFIC FURISHS FOR INGESTION LOBSTER		NON- CARCINO CHEMICAL SPECIFIC RISKS FOR INGESTION LOBSTER		COMBINE CARCINO CHEMICAL RISKS	IENIC	COMBINED NONCARCIN CHEMICAL B	
ANALYTE	BVA	MAX	AVQ	MAX	AVG .	MAX	AVG	MAX	AVS	MAX	AVG	MAX	AVA	MAX	AVG	MAX	AVG	MAX	AVQ	MAX
POLYAROMATIC HYDROCARBONS				1					,	,										
ANTHRACENE	 -		2.20E-08	1.74E-07	<u> </u>	 -	-		 -		<u> </u>	<u> </u>	-		3.80E-05	2.03E-04	<u> </u>	-	3.81E-05	2.03E-04
BENZO(A)ANTHRACENE	3.28E-08	2.45E-07	<u> </u>	-			<u> </u>	1				-	6.69E-05	2.87E-04		<u> </u>	6.69E~05	2.88E-04	-	-
BENZO(A)PYRENE	3.28E-08	1.57E-07	<u> </u>	<u>-</u>				<u> </u>				<u> </u>	7.16E-05	2.92E-04			7.16E-05	2.93E~04	-	-
BENZO(E)PYRENE	ļ <u> </u>			-		-	<u> </u>	-		_	<u></u> -		<u> </u>		_	-	-	-	_	-
BENZO(Q,H,I)PERYLENE	ļ <u>-</u>		1.33E-06	4.52E-06	<u> </u>	-	<u>-</u>	-	-			-	-	-	1.98E-03	6.32E-03	-	_	1.98E-03	5.33E-03
CHRYSENE	3.31E-08	2.18E-07			-	-	-				-	-	1.15E-04	5.12E-04	-	_	1.15E-04	5.12E-04	_	
DIBENZO(A,H)ANTHRACENE	3.89E-09	1.63E-08	_		-		-	-	-	_	_	-	-	_	_	_	3.89E-09	1.63E-08	0.00E+00	0.00E+00
FLUORANTHENE	_		7.81E-07	9.59E-06	-	[-	Ĭ	-	-	_	-	-	-	-	3.55E-03	1.57E-02	_	-	3.55E-03	1 57E-02
FLUORENE	-	-	5.25E-08	7.53E-07	-	_	-	-	-	_	-	-	<u> </u>		2.71E-04	1.27E-03			2.71E-04	1.27E-03
INDENO(1,2,3-CD)PYRENE	1.475-08	6.47E-08	-	-	-	-	-	_	-	-	_	-	1.93E-05	6.38E-05		_	1.93E-05	6.39E-05		
PERYLENE	_	_	_	_	-	-	-	-	_	-	_	<u> </u>	_		· _	 		0.032 00		
PHENANTHRENE	-	-	4.29E-06	4.25E-05	-	_	-	-	-	_	_			-	1.21E-02	6.17E-02	ļ — <u> </u>		1.21E-02	6.18E-02
PYRENE	-	-	8.93E-07	9.13E-06	_	-	-	_			-	_	 	_	3.96E-03	1.70E-02			3.96E-03	1.70E-02
POLYCHLORINATED BIPHENYLS (PCS+)																			0.502-00	1.70E-02
TOTAL PCBe (AROCHLOR)	6.06E-09	3.14E-08			3.54E-09	1.85E-08	-	-	-	-	-	-	3.27E-05	5.91E-05	-	-	3.27E-05	5.91E-05	-	_
CUMULATIVE TOTALS:	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVQ	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX
	3.76E-07	1.33E-06	2.26E-03	5.16E-03	3.54E-09	1.85E-08	3.11E-06	1.07E-05	-	_	4.29E-07	2.00E-06	1.81E-03	4.14E-03	7.60E+00	1.43E+01	1.81E-03	4.14E-03	7.60E+00	1.43E+01

TABLE 5-60
COMPARISON OF CHEMICAL CONCENTRATIONS IN LOBSTER TAIL FLESH FOR ALL DATA SUBGROUPS
PORTSMOUTH NAVAL SHIPYARD

	SAMPLES COLLECTE FROM AROUND SEAVEY IS		SAMPLES COLLECTE FROM CLA ISLAND EMBAYME	RK'S	SAMPLES COLLECTE FROM THE LOWER PISCATAQU		SAMPLES COLLECTE YORK HAR	for a formation of the contract of the contrac	SAMPLES (FROM THE PISCATAQU INCLUDING ISLAND AN ISLAND EM	JA NOT SEAVEY D CLARK'S	FDA ACTION LEVELS FOR THE EDIBLE PORTION OF FISH+
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	1 400 00000 1
INORGANICS											
ALUMINUM	2.2133	2.5338	10.2058	18.2970	6.7292	18.2970	NA	NA	7.7685	12.0652	NR
ARSENIC	3.9050	5.2600	2.8950	2.9200	2.7000	5.2600	NA	NA	1.3000	1.8200	NR
CADMIUM	0.0062	0.0062	0.0049	0.0076	0.0059	0.0109	NA	NA	0.0066	0.0109	NR
CHROMIUM	0.1397	0.1442	0.1889	0.2470	0.1717	0.2470	NA	NA	0.1866	0.1887	NR
COPPER	5.7748	5.8504	4.9405	5.7770	5.3747	5.8504	NA	NA	5.4088	5.8483	NR
IRON	3.4750	4.7200	29.4400	54.9100	16.0517	54.9100	NA	NA	15.2400	21.1400	NR
LEAD	0.0165	0.0210	0.0625	0.1160	0.0402	0.1160	NA	NA	0.0415	0.0440	NR
MANGANESE	0.5392	0.7488	0.6852	0.7600	0.6863	1.0633	NA	NA	0.8346	1.0633	NR
MERCURY	0.3001	0.3090	0.2628	0.3488	0.2716	0.3488	NA	NA	0.2322	0.2322	1.00*
NICKEL	0.0421	0.0666	0.1072	0.1729	0.1181	0.2563	. NA	NA	0.2052	0.2563	NR
SILVER	0.1047	0.1414	0.1693	0.1729	0.1442	0.2260	NA	NA	0.1586	0.2260	NR
ZINC	19.5530	20.0100	16.5755	18.3120	17.0493	20.0100	NA	NA	15.0195	15.8910	NR
PESTICIDES											
ALDRIN	0.00015	0.00015	0.00012	0.00015	0.00017	0.00047	0.00008	0.00008	0.00028	0.00047	0.30
ALPHA-CHLORDANE	0.00015	0.00015	0.00016	0.00023	0.00014	0.00023	0.00026	0.00026	0.00010	0.00015	NR
HEPTACHLOR	0.00015	0.00015	0.00013	0.00015	0.00012	0.00015	0.00015	0.00015	0.00008	0.00015	0.30
HEPTACHLOR EPOXIDE	0.00032	0.00048	0.00012	0.00016	0.00017	0.00048	0.00024	0.00024	0.00011	0.00020	0.30
HEXACHLOROBENZENE	0.00059	0.00059	0.00048	0.00059	0.00042	0.00059	0.00014	0.00014	0.00016	0.00019	0.30
LINDANE (GAMMA-BHC)	0.00015	0.00015	0.00022	0.00045	0.00016	0.00045	0.00008	0.00008	0.00008	0.00009	NR
MIREX	0.00015	0.00015	0.00013	0.00015	0.00013	0.00015	0.00015	0.00015	0.00012	0.00015	0.10
TRANS-NONACHLOR	0.00015	0.00015	0.00018	0.00026	0.00016	0.00026	0.00013	0.00013	0.00016	0.00018	NR

ALL VALUES ARE REPORTED IN MG/KG

ND: ANALYTE WAS NOT DETECTED

NA: ANALYTE WAS NOT ANALYZED

NR: VALUE WAS NOT REPORTED BY THE FOOD AND DRUG ADMINISTRATION (FDA)

+: VALUES REPORTED IN THIS COLUMN WERE DERRIVED FROM

ACTION LEVELS FOR POISONOUS OR DELETERIOUS SUBSTANCES IN HUMAN FOOD AND ANIMAL FEED,

PUBLISHED BY THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, PUBLIC HEALTH SERVICE, FOOD AND DRUG ADMINISTRATION, (617-023/68013). 1992

- *: VALUE ESTABLISHED FOR METHYL MERCURY
- #: VALUES REPRESENT A SINGLE SAMPLE

LOBSTER SAMPLES WERE NOT COLLECTED FROM THE GREAT BAY ESTUARY

TABLE 5-60
COMPARISON OF CHEMICAL CONCENTRATIONS IN LOBSTER TAIL FLESH FOR ALL DATA SUBGROUPS
PORTSMOUTH NAVAL SHIPYARD

	SAMPLES COLLECTE FROM AROUND SEAVEY IS	LAND	SAMPLES COLLECTE FROM CLA ISLAND EMBAYME	RK'S NT	SAMPLES COLLECTE FROM THE LOWER PISCATAQU		SAMPLES COLLECTE YORK HAR		FROM THE PISCATAQ	UA NOT S SEAVEY ID CLARK'S	FDA ACTION LEVELS FOR THE EDIBLE PORTION OF FISH+
ANALYTE	AVG	MAX		MAX	AVG	MAX	AVG	MAX	AVG	MAX	
o,p'-DDD	0.00025	0.00035	0.00015	0.00015	0.00017	0.00035	0.00015	0.00015	0.00013	0.00015	NR
o,p'-DDE	0.00015	0.00015	0.00012	0.00015	0.00013	0.00015	0.00015	0.00015	0.00013	0.00015	5.00
o,p'-DDT	0.00015	0.00015	0.00012	0.00015	0.00013	0.00015	0.00015	0.00015	0.00013	0.00015	5.00
p,p'-DDD	0.00015	0.00015	0.00023	0.00034	0.00019	0.00034	0.00039	0.00039	0.00016	0.00018	NR
p,p'-DDE	0.00118	0.00134	0.00066	0.00084	0.00074	0.00134	0.00081	0.00081	0.00042	0.00056	5.00
p,p'-DDT	0.00015	0.00015	0.00094	0.00217	0.00050	0.00217	0.00019	0.00019	0.00019	0.00024	5.00
POLYAROMATIC HYDROCARBONS			· · · · · · · · · · · · · · · · · · ·						L		
ANTHRACENE	ND	ND	0.00695	0.01554	0.01543	0.08215	NA	NA	0.04213	0.08215	NR
BENZO(A)ANTHRACENE	ND	ND	0.01981	0.03696	0.03637	0.15635	NA	NA	0.09604	0.15635	NR
BENZO(A)PYRENE	0.00294	0.00399	0.02335	0.04200	0.03893	0.15900	NA	NA	0.09830	0.15900	NR
BENZO(E)PYRENE	ND	ND	0.03627	0.05880	0.04860	0.18020	, NA	NA	0.11360	0.18020	NR
BENZO(G,H,I)PERYLENE	ND	ND	0.00846	0.01344	0.01071	0.03419	NA	NA	0.02273	0.03419	NR
CHRYSENE	ND	ND	0.03487	0.05460	0.06258	0.27825	NA	NA	0.16498	0.27825	NR
DIBENZO(A,H)ANTHRACENE	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	NR
FLOURANTHENE	0.00562	0.00935	0.11429	0.20160	0.19187	0.84800	NA	NA	0.49450	0.84800	NR
FLOURENE	ND	ND	0.01041	0.02016	0.01467	0.06890	NA	NA	0.03504	0.06890	NR
INDENO(1,2,3-CD)PYRENE	ND	ND	0.00780	0.01302	0.01047	0.03472	NA	NA	0.02347	0.03472	NR
PERYLENE	ND	ND	0.01363	0.02100	0.01706	0.05565	NA	NA	0.03793	0.05565	NR
PHENANTHRENE	0.00200	0.00273	0.03220	0.05460	0.06516	0.33390	NA	NA	0.17776	0.33390	NR
PYRENE	0.00410	0.00630	0.10436	0.20580	0.16044	0.68900	NA	NA	0.40090	0.68900	NR
POLYCHLORINATED BIPHENYLS											14,7
TOTAL PCBs (AROCHLOR)	0.01756	0.02417	0.01390	0.01820	0.01341	0.02420	0.01290	0.01290	0.00860	0.00890	NR

ALL VALUES ARE REPORTED IN MG/KG

ND: ANALYTE WAS NOT DETECTED

NA: ANALYTE WAS NOT ANALYZED

NR: VALUE WAS NOT REPORTED BY THE FOOD AND DRUG ADMINISTRATION (FDA)

- +: VALUES REPORTED IN THIS COLUMN WERE DERRIVED FROM
 - ACTION LEVELS FOR POISONOUS OR DELETERIOUS SUBSTANCES IN HUMAN FOOD AND ANIMAL FEED,

PUBLISHED BY THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, PUBLIC HEALTH SERVICE, FOOD AND DRUG ADMINISTRATION, (617-023/68013). 1992

- *: VALUE ESTABLISHED FOR METHYL MERCURY
- #: VALUES REPRESENT A SINGLE SAMPLE
- 1.OBSTER SAMPLES WERE NOT COLLECTED FROM THE GREAT BAY ESTUARY

TABLE 5-61 COMPARISON OF CHEMICAL CONCENTRATIONS IN MUSSELS FOR ALL DATA SUBGROUPS **PORTSMOUTH NAVAL SHIPYARD**

	SAMPLE COLLEC FROM AROUND SEAVEY	TED I ISLAND	SAMPLES COLLECT FROM CL ISLAND EMBAYM	TED ARK'S ENT	SAMPLES COLLECTI YORK HAI	ABOA .	THE GRE	TED FROM AT UARY	SAMPLE COLLEC FROM TH LOWER PISCATA	TED 1e Qua	FROM THE PISCATA INCLUDITIES AND A ISLAND F	EMBAYMENT	FDA ACTION LEVELS FOR THE EDIBLE PORTION OF FISH+
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	
INORGANICS													
ALUMINUM	28.193	58.986	30.508	46.980	24.930	34.034	44.088	66.234	29.968	58.986	34.303	53.703	NR
ARSENIC	0.722	1.350	1.134	2.200	0.551	0.970	1.094	1.780	0.865	2.200	0.948	1.280	NR
CADMIUM	0.214	0.343	0.231	0.290	0.191	0.216	0.276	0.421	0.206	0.343	0.167	0.203	NR
CHROMIUM	0.369	0.488	0.452	0.604	0.263	0.339	0.615	0.843	0.402	0.604	0.425	0.503	NR
COPPER	0.868	3.165	0.875	1.268	0.860	0.955	0.979	1.122	0.833	3.165	0.680	0.783	NR
IRON	63.418	128.700	65.894	96.560	50.765	62.060	88.980	121.980	65.171	128.700	68.314	102.260	NR
LEAD	1.020	3.120	1.133	1.857	0.263	0.385	0.528	0.661	1.032	3.120	0.823	1.350	NR
MANGANESE	1.730	8.136	1.928	5.693	1.189	1.450	5.738	11.270	1.734	8.136	1.273	1.634	NR
MERCURY	0.046	0.110	0.038	0.058	0.042	0.068	0.040	0.057	0.047	0.110	0.061	0.086	1.00*
NICKEL	0.193	0.351	0.250	0.468	0.155	0.200	0.270	0.308	0.210	0.468	0.195	0.293	NR
SILVER	0.024	0.290	0.103	0.408	0.013	0.018	0.206	0.274	0.043	0.408	0.016	0.021	NR
ZINC	11.985	25.086	13.869	18.480	11.387	12.963	14.786	18.744	12.518	25.086	12.254	18.900	NR
PESTICIDES													
ALDRIN	0.00017	0.00045	0.00018	0.00036	0.00009	0.00020	0.00026	0.00030	0.00028	0.00377	0.00085	0.00377	0.30
ALPHA-CHLORDANE	0.00026	0.00081	0.00054	0.00115	0.00039	0.00101	0.00072	0.00097	0.00040	0.00262	0.00078	0.00262	NR
HEPTACHLOR	ND	ND	0.00006	0.00002	0.00023	0.00077	ND	ND	0.00007	0.00002	ND	ND	0.30
HEPTACHLOR EPOXIDE	0.00003	0.00025	0.00003	0.00001	ND	ND	. ND	ND	0.00004	0.00025	ND	ND	0.30
HEXACHLOROBENZENE	ND	ND	0.00010	0.00003	ND	ND	ND	ND	0.00022	0.00548	0.00113	0.00548	0.30
LINDANE (GAMMA-BHC)	0.00024	0.00414	0.00006	0.00015	ND	ND	0.00013	0.00051	0.00017	0.00414	ND	ND	NR
MIREX	ND	ND	0.00007	0.00015	ND	ND	ND	ND	0.00008	0.00015	ND	ND	0.10
TRANS-NONACHLOR	0.00025	0.00055	0.00048	0.00121	0.00057	0.00117	0.00059	0.00087	0.00038	0.00265	0.00078	0.00265	NR
o,p'-DDD	0.00013	0.00082	0.00041	0.00137	0.00031	0.00053	0.00027	0.00050	0.00025	0.00196	0.00045	0.00196	NR
o,p'-DDE	0.00009	0.00017	0.00007	0.00009	ND	ND	ND	ND	0.00009	0.00017	ND	ND	5.00
o,p'-DDT	0.00039	0.00347	0.00024	0.00061	0.00010	0.00023	0.00009	0.00024	0.00031	0.00347	ND	ND	5.00
p,p'-DDD	0.00086	0.00228	0.00256	0.00705	0.00078	0.00100	0.00165	0.00249	0.00150	0.00954	0.00254	0.00954	NR
p,p'-DDE	0.00107	0.00203	0.00173	0.00457	0.00073	0.00089	0.00241	0.00449	0.00147	0.01038	0.00276	0.01038	5.00
p,p'-DDT	0.00133	0.00709	0.00102	0.00229	0.00110	0.00296	0.00063	0.00161	0.00138	0.00963	0.00228	0.00963	5.00

ALL VALUES ARE REPORTED IN MG/KG

ND: ANALYTE WAS NOT DETECTED

NA: ANALYTE WAS NOT ANALYZED

NR: VALUE WAS NOT REPORTED BY THE FOOD AND DRUG ADMINISTRATION (FDA)

+: VALUES REPORTED IN THIS COLUMN WERE DERRIVED FROM

ACTION LEVELS FOR POISONOUS OR DELETERIOUS SUBSTANCES IN HUMAN FOOD AND ANIMAL FEED,

PUBLISHED BY THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, PUBLIC HEALTH SERVICE, FOOD AND DRUG ADMINISTRATION, (617-023/68013). 1992

• : VALUE ESTABLISHED FOR METHYL MERCURY

TABLE 5-61
COMPARISON OF CHEMICAL CONCENTRATIONS IN MUSSELS FOR ALL DATA SUBGROUPS
PORTSMOUTH NAVAL SHIPYARD

	SAMPLE COLLEC FROM AROUND SEAVEY	TED)	SAMPLE COLLEC FROM CI ISLAND EMBAYN	TED LARK'S	SAMPLES COLLECT YORK HA	ED FROM	The state of the same of the same of	TED FROM	SAMPLE COLLEC FROM TH LOWER PISCATA	TED 1E	FROM TI PISCATA INCLUDI ISLAND	S COLLECTED HE LOWER IQUA NOT NG SEAVEY AND CLARK'S EMBAYMENT	FDA ACTION LEVELS FOR THE EDIBLE PORTION OF FISH+
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	
POLYAROMATIC HYDROCARBONS													
ANTHRACENE	0.00173	0.00649	0.00220	0.00602	ND	ND	ND	ND	0.00115	0.00649	ND	ND	NR
BENZO(A)ANTHRACENE	ND	ND	ND	ND	ND	ND	0.00592	0.01200	0.00206	0.00741	0.00338	0.00741	NR
BENZO(A)PYRENE	ND	ND	ND	ND	ND	ND	0.00693	0.01200	0.00134	0.00456	0.00237	0.00456	NR
BENZO(E)PYRENE	0.00356	0.00765	0.00642	0.01320	ND	ND	0.01504	0.02800	0.00470	0.01320	0.00491	0.00767	NR
CHRYSENE	0.00373	0.00726	0.00462	0.00900	ND	ND	0.00914	0.01600	0.00420	0.00948	0.00477	0.00948	NR
FLUORANTHENE	0.00886	0.01395	0.01121	0.02700	0.00501	0.00705	0.01168	0.01800	0.00997	0.02700	0.01084	0.02210	NR
PERYLENE	0.00190	0.00420	0.00204	0.00392	ND	ND	0.00723	0.01100	0.00193	0.00420	0.00189	0.00403	NR
PHENANTHRENE	0.00349	0.00564	0.00275	0.00525	0.00345	0.00645	0.00158	0.00418	0.00353	0.01320	0.00486	0.01320	NR
PYRENE	0.00805	0.01328	0.01107	0.02400	0.00321	0.00570	0.01756	0.03500	0.00949	0.02400	0.01071	0.02080	NR
POLYCHLORINATED BIPHENYLS													
TOTAL PCBs (AROCHLOR)	0.01963	0.04847	0.02843	0.06000	0.01367	0.01663	0.00901	0.03629	0.02153	0.06002	0.01730	0.02330	NR

ALL VALUES ARE REPORTED IN MG/KG

ND: ANALYTE WAS NOT DETECTED

NA: ANALYTE WAS NOT ANALYZED

NR: VALUE WAS NOT REPORTED BY THE FOOD AND DRUG ADMINISTRATION (FDA)

+: VALUES REPORTED IN THIS COLUMN WERE DERRIVED FROM

ACTION LEVELS FOR POISONOUS OR DELETERIOUS SUBSTANCES IN HUMAN FOOD AND ANIMAL FEED,

PUBLISHED BY THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, PUBLIC HEALTH SERVICE, FOOD AND DRUG ADMINISTRATION, (617-023/68013). 1992

*: VALUE ESTABLISHED FOR METHYL MERCURY

TABLE 5-62 COMPARISON OF CHEMICAL CONCENTRATIONS IN FLOUNDER FILLET SAMPLES FOR ALL DATA SUBGROUPS PORTSMOUTH NAVAL SHIPYARD

	COLLECTED FROM AROUND		COLLECTED CO FROM CLARK'S FF ISLAND LC		LOWER		SAMPLES COLLECTE YORK HAR		SAMPLES OF FROM THE PISCATAQUINCLUDING ISLAND AND ISLAND EMI	D FDA ACTION LEVELS FOR THE EDIBLE PORTION OF FISH+	
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	
INORGANICS											
ALUMINUM	1.0850	1.2500	2.1579	2.6796	1.5911	2.6796	NA	NA	0.9030	0.9030	NR
ARSENIC	1.6850	1.7500	1.3800	1.6400	1.4733	1.7500	NA	NA	1.3300	1.3300	NR
CADMIUM	ND	ND	0.0059	0.0117	0.0045	0.0117	NA	NA	ND	ND	NR
CHROMIUM	0.2365	0.3250	0.1725	0.2574	0.1852	0.3250	NA	NA	0.1204	0.1204	NR
COPPER	0.2313	0.2425	0.2648	0.3510	0.2342	0.3510	NA	NA	0.1483	0.1483	NR
IRON	2.8350	3.7700	5.4167	6.4300	3.9900	6.4300	NA	NA	2.0200	2.0200	NR
LEAD	0.0555	0.0950	0.0370	0.0490	0.0388	0.0950	NA	NA	0.0110	0.0110	NR
MANGANESE	0.4205	0.7750	0.2758	0.5850	0.2920	0.7750	, NA	NA	0.0839	0.0839	NR
MERCURY	0.0135	0.0220	0.0316	0.0351	0.0219	0.0351	NA	NA	0.0193	0.0193	1.00*
NICKEL	0.1385	0.1520	0.1578	0.1766	0.1444	0.1766	NA	NA	0.1161	0.1161	NR
SILVER	ND	ND	0.0065	0.0142	0.0059	0.0142	NA	NA	0.0086	0.0086	NR
ZINC	8.7125	10.5250	7.4790	9.6170	7.5180	10.5250	NA	NA	5.2460	5.2460	NR

ALL VALUES ARE REPORTED IN MG/KG

ND: ANALYTE WAS NOT DETECTED

NA: ANALYTE WAS NOT ANALYZED

NR: VALUE WAS NOT REPORTED BY THE FOOD AND DRUG ACTION LEVELS FOR POISONOUS OR DELETERIOUS SUBSTANCES IN HUMAN FOOD AND ANIMAL FEED.

+: VALUES REPORTED IN THIS COLUMN WERE DERRIVED FROM

ACTION LEVELS FOR POISONOUS OR DELETERIOUS SUBSTANCES IN HUMAN FOOD AND ANIMAL FEED,

PUBLISHED BY THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, PUBLIC HEALTH SERVICE, FOOD AND DRUG ADMINISTRATION, (617-023/68013). 1992

*: VALUE ESTABLISHED FOR METHYL MERCURY

#: VALUE REPRESENTS A SINGLE SAMPLE.

FLOUNDER SAMPLES WERE NOT COLLECTED FROM THE GREAT BAY ESTUARY.

TABLE 5-62 COMPARISON OF CHEMICAL CONCENTRATIONS IN FLOUNDER FILLET SAMPLES FOR ALL DATA SUBGROUPS PORTSMOUTH NAVAL SHIPYARD

	COLLECTED FROM AROUND		COLLECTED FROM CLARK'S ISLAND		 Operation of the property of the		SAMPLES COLLECTED FROM YORK HARBOR		SAMPLES COLLECTED FROM THE LOWER PISCATAQUA NOT INCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT		FDA ACTION LEVELS FOR THE EDIBLE PORTION OF FISH+
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	
PESTICIDES											
ALDRIN	0.00040	0.00060	0.00012	0.00015	0.00026	0.00060	ND	ND	0.00037	0.00058	0.30
ALPHA-CHLORDANE	0.00040	0.00060	0.00036	0.00085	0.00030	0.00085	0.00039#	0.00039#	0.00016	0.00016	NR
HEPTACHLOR	0.00040	0.00060	0.00012	0.00015	0.00020	0.00060	ND	ND	0.00015	0.00015	0.30
HEPTACHLOR EPOXIDE	0.00040	0.00060	0.00012	0.00015	0.00017	0.00060	ND	ND	0.00003	0.00003	0.30
HEXACHLOROBENZENE	0.00160	0.00240	0.00055	0.00117	0.00074	0.00240	ND	ND	0.00013	0.00016	0.30
LINDANE (GAMMA-BHC)	0.00040	0.00060	0.00010	0.00014	0.00018	0.00060	ND	ND	0.00006	0.00007	NR
MIREX	0.00040	0.00060	0.00012	0.00015	0.00020	0.00060	ND	ND	0.00015	0.00015	0.10
TRANS-NONACHLOR	0.00080	0.00110	0.00072	0.00133	0.00059	0.00133	0.00019#	0.00019#	0.00023	0.00031	NR
o,p'-DDD	0.00040	0.00060	0.00030	0.00046	0.00027	0.00060	ND	ND	0.00015	0.00015	NR
o,p'-DDE	0.00040	0.00060	0.00015	0.00031	0.00021	0.00060	ND	ND	0.00014	0.00015	5.00
o,p'-DDT	0.00040	0.00060	0.00037	0.00083	0.00041	0.00089	ND	ND	0.00052	0.00089	5.00
p,p'-DDD	0.00040	0.00060	0.00137	0.00276	0.00072	0.00276	0.00035#	0.00035#	0.00010	0.00015	NR
p,p'-DDE	0.00350	0.00530	0.00419	0.00943	0.00299	0.00943	0.00079#	0.00079#	0.00067	0.00081	5.00
p,p'-DDT	0.00040	0.00060	0.00056	0.00080	0.00125	0.00531	ND	ND	0.00277	0.00531	5.00
POLYCHLORINATED BIPHENYLS											
TOTAL PCBs (AROCHLOR)	0.04284	0.06245	0.04052	0.07987	0.03371	0.07987	0.01352	0.01414	0.01437	0.01845	NR

ALL VALUES ARE REPORTED IN MG/KG

ND: ANALYTE WAS NOT DETECTED

NA: ANALYTE WAS NOT ANALYZED

NR: VALUE WAS NOT REPORTED BY THE FOOD AND DRUG ACTION LEVELS FOR POISONOUS OR DELETERIOUS SUBSTANCES IN HUMAN FOOD AND ANIMAL FEED,

- +: VALUES REPORTED IN THIS COLUMN WERE DERRIVED FROM
 - ACTION LEVELS FOR POISONOUS OR DELETERIOUS SUBSTANCES IN HUMAN FOOD AND ANIMAL FEED,
 - PUBLISHED BY THE DEPARTMENT OF HEALTH AND HUMAN SERVICES, PUBLIC HEALTH SERVICE, FOOD AND DRUG ADMINISTRATION, (617-023/68013). 1992
- *: VALUE ESTABLISHED FOR METHYL MERCURY
- #: VALUE REPRESENTS A SINGLE SAMPLE.

FLOUNDER SAMPLES WERE NOT COLLECTED FROM THE GREAT BAY ESTUARY.

TABLE 5-63 COMPARISON OF CHEMICAL CONCENTRATIONS IN SEDIMENT SAMPLES FOR ALL DATA SUBGROUPS PORTSMOUTH NAVAL SHIPYARD

	SAMPLES COLLECTED FROM AROUND SEAVEY ISLAND		SAMPLES C FROM CLAP ISLAND EME	RK'S BAYMENT	SAMPLES C		SAMPLES C FROM THE LOWER PIS		SAMPLES COLLECTED FROM THE LOWER PISCATAQUA NOT INCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT		
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	
INORGANICS (MG/KG)									The second secon		
ALUMINUM	32,635.0000	48,800.0000	37,476.4706	77,900.0000	18,700.0000	20,700.0000	33,647.6190	77,900.0000	28,050.0000	31,700.0000	
ARSENIC	10.9700	17.8000	15.8706	28.7000	0.7350	1.2000	12.2976	28.7000	6.0500	13.0000	
CADMIUM	0.5333	2.0000	0.7535	1.1000	ND	ND	0.5794	2.0000	0.2000	0.2700	
CHROMIUM	88.1800	151.0000	150.0471	211.0000	27.8500	34.0000	109.0119	211.0000	58.2500	99.8000	
COPPER	47.1150	105.0000	49.4656	92.4000	1.2950	1.6000	43.2651	105.0000	8.0300	22,4000	
IRON	23,610.0000	50,300.0000	29,311.7647	40,000.0000	7,350.0000	9,250.0000	24,632.3810	50,300.0000	14,152.5000	22.800.0000	
LEAD	70.7900	124.0000	65.7176	104.0000	19.9000	25.2000	63.3348	124.0000	27.2900	61.9000	
MANGANESE	308.7500	421.0000	330.2353	542.0000	104.3000	135.0000	305.1905	542.0000	209.5000	306.0000	
MERCURY	0.2142	0.6700	0.2550	0.6700	ND	ND	0.2250	0.6700	ND	ND	
NICKEL	28.0526	91.2000	32.2235	44.5000	9.3000	11.1000	27.9049	91.2000	13.7250	21.7000	
SILVER	0.4610	0.7400	0.7982	1.3000	ND	ND	0.5926	1.3000	0.4083	0.8900	
ZINC	139.2550	530.0000	135.5765	206.0000	19.5000	21.7000	126.4357	530.0000	49.5000	82.0000	
PESTICIDES (MG/KG)										02.0000	
ALDRIN	0.00280	0.02240	0.00063	0.00180	0.00068	0.00072	0.00168	0.02240	0.00035	0.00068	
ALPHA-CHLORDANE	0.00068	0.00292	0.00072	0.00237	ND	ND	0.00069	0.00292	0.00062	0.00098	
HEPTACHLOR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
HEPTACHLOR EPOXIDE	ND	ND	0.00035	0.00090	ND	ND	ND	ND	ND	ND	
HEXACHLOROBENZENE	0.00033	0.00086	0.00112	0.00720	ND	ND	0.00060	0.00720	ND	ND ND	
LINDANE (GAMMA-BHC)	0.00046	0.00106	0.00038	0.00079	ND	ND	0.00041	0.00106	ND	ND	
MIREX	0.00039	0.00120	0.00057	0.00170	ND	ND	0.00045	0.00170	ND	ND	
TRANS-NONACHLOR	0.00034	0.00148	0.00052	0.00123	ND	ND	0.00039	0.00148	ND	ND	
o,p'-DDD	0.00080	0.00372	0.00184	0.00290	ND	ND	0.00116	0.00372	0.00055	0.00082	
o,p'-DDE	0.00058	0.00223	0.00114	0.00220	ND	ND	0.00075	0.00223	0.00022	0.00031	
o,p'-DDT	0.00114	0.00950	0.00117	0.00420	ND	ND	0.00104	0.00950	ND	ND ND	
p,p'-DDD	0.00303	0.01908	0.00726	0.01600	ND	ND	0.00439	0.01908	0.00126	0.00349	
p,p'-DDE	0.00186	0.00539	0.00345	0.00640	ND	ND	0.00232	0.00640	0.00074	0.00219	
p,p'-DDT	0.01876	0.11956	0.00517	0.01411	0.00598	0.00691	0.01265	0.11956	0.00706	0.01179	

ND: ANALYTE WAS NOT DETECTED
NA: ANALYTE WAS NOT ANALYZED
NO SEDIMENT SAMPLES WERE COLLECTED FROM THE GREAT BAY ESTUARY

TABLE 5-63
COMPARISON OF CHEMICAL CONCENTRATIONS IN SEDIMENT SAMPLES FOR ALL DATA SUBGROUPS
PORTSMOUTH NAVAL SHIPYARD

	SAMPLES CO FROM AROU SEAVEY ISLA	ND ND	SAMPLES C FROM CLAR ISLAND EME	K'S	SAMPLES C	and the second of the second o	SAMPLES C FROM THE LOWER PISC		SAMPLES COLLECTED FROM THE LOWER PISCATAQUA NOT INCLUDING SEAVEY ISLAND AND CLARK'S ISLAND EMBAYMENT		
ANALYTE	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	AVG	MAX	
POLYAROMATIC HYDROCARBONS											
ANTHRACENE	0.32050	1.90000	0.09633	0.19000	0.01500	0.01700	0.24125	1.90000	0.19420	0.40000	
BENZO(A)ANTHRACENE	0.61083	3.60000	0.28100	0.45000	0.04450	0.06500	0.48149	3.60000	0.35460		
BENZO(A)PYRENE	0.56125	2.20000	0.33133	0.57000	0.05550	0.08400	0.48184	2.30000	0.37600	0.70000	
BENZO(E)PYRENE	. 0.40750	1.50000	0.25667	0.42000	0.03900	0.06000	0.35043	1.50000	0.24220	0.48000	
BENZO(G,H,I)PERYLENE	0.20996	0.55000	0.17167	0.38000	0.02450	0.04500	0.19474	0.66000	0.14460	0.29000	
CHRYSENE	0.60875	3.20000	0.30200	0.52000	0.05050	0.07600	0.48643	3.20000	0.33700	0.63000	
DIBENZO(A,H)ANTHRACENE	0.06275	0.24000	0.04253	0.08400	ND	ND	0.05709	0.24000	0.05670	0.12000	
FLOURANTHENE	1.58750	14.00000	0.58067	1.00000	0.11200	0.15000	1.14012	14.00000	0.66120	1.20000	
FLOURENE	0.09452	0.67500	0.03157	0.06900	0.00550	0.00600	0.07658	1.10000	0.03820	0.08200	
INDENO(1,2,3-CD)PYRENE	0.22692	0.69000	0.17633	0.34000	0.03150	0.05700	0.21539	0.95000	0.18460	0.38000	
PERYLENE	0.18458	0.86000	0.11553	0.17000	0.01400	0.02400	0.15622	0.86000	0.10280	0.20000	
PHENANTHRENE	0.84479	6.20000	0.29700	0.53000	0.06450	0.07400	0.62655	6.20000	0.34620	0.64000	
PYRENE	1.30979	10.00000	0.56033	0.94000	0.09450	0.13000	0.97780	10.00000	0.60440	1.10000	
POLYCHLORINATED BIPHENYLS (MG/						3.10000	0.37700	10.0000	0.00440	1.10000	
TOTAL PCBs (AROCHLOR)	0.05965	0.34770	0.08164	0.19040	0.00810	0.01030	0.06702	0.34770	0.05452	0.13360	

ND: ANALYTE WAS NOT DETECTED NA: ANALYTE WAS NOT ANALYZED

NO SEDIMENT SAMPLES WERE COLLECTED FROM THE GREAT BAY ESTUARY

IEUBK LEAD MODEL OUTPUT: MUSSELS AVERAGE INGESTION RATE

TABLE 5-64

TABLE 5-65

IEUBK LEAD MODEL OUTPUT: MUSSELS WORST CASE INGESTION RATE

TABLE 5-66

IEUBK LEAD MODEL OUTPUT: LOBSTER TAIL, WHOLE LOBSTER AND FLOUNDER WORST CASE INGESTION RATE

TABLE 5-67

IEUBK LEAD MODEL OUTPUT: LOBSTER TAIL, WHOLE LOBSTER AND MUSSELS AVERAGE EXPOSURE SCENARIO

TABLE 5-68

IEUBK LEAD MODEL OUTPUT: WEIGHTED AVERAGE (MUSSELS, LOBSTER TAIL, WHOLE LOBSTER AND FLOUNDER) AVERAGE EXPOSURE SCENARIO

TABLE 5-69

IEUBK LEAD MODEL OUTPUT: WEIGHTED AVERAGE (MUSSELS, LOBSTER TAIL, WHOLE LOBSTER AND FLOUNDER) WORST CASE EXPOSURE SCENARIO

Technical Memorandum Summary of Fish and Shellfish Data used to Support the Conclusions for Human Health Risks for Seafood Ingestion for Operable Unit 4 Portsmouth Naval Shipyard, Kittery, Maine

This memorandum presents a brief summary of the fish/shellfish data used to support the conclusions of for human health risks for seafood ingestion for Operable Unit (OU) 4 for Portsmouth Naval Shipyard (PNS), as requested by United States Environmental Protection Agency (USEPA). The following documents were used for the evaluation of human health risks for OU4:

- Final Human Health Risk Assessment Report for Off-Shore Media, Portsmouth Naval Shipyard, Kittery, Maine. Addendum To: Final Public Health and Environmental Risk Evaluation Part -A: Human Health Risk Assessment Report, Portsmouth Naval Shipyard, Kittery, Maine (McLaren/Hart, May 1994).
- Phase I/Phase II Offshore Data Comparative Analysis Report, Portsmouth Naval Shipyard, Kittery, Maine (Tetra Tech, October 1998).
- Public Health Assessment for Portsmouth Naval Shipyard, Kittery, Maine (ATSDR, November, 2007).

Final Human Health Risk Assessment Report

This document presents a summary of the human health risk assessment (HHRA)that was conducted using surface water, sediment, and tissue (lobster, mussel, and flounder) samples collected at locations adjacent to Portsmouth Naval Shipyard (PNS), along with reference locations. Only Phase I data that were collected as part of the Estuarine Ecological Risk Assessment (EERA) (NCCOSC, 2000) were included in the HHRA, because the Phase II data were not available when the HHRA was conducted. The HHRA evaluated risks from both recreational and subsistence fishing, and considered the following various data sets:

- Lower Piscataqua River: This was the primary data set for the HHRA conclusions. Most of the samples were from around Seavey Island and Clark's Island Embayment, but a few were from background locations.
- Lower Piscataqua River Excluding Seavey Island and Clark's Island Embayment: This data set
 was used to determine the condition of off-site media, with little impact from PNS. This group
 was considered the background data set.
- Seavey Island: This data set was evaluated to see impacts from Seavey Island.
- Clark's Island Embayment: This data set was evaluated to see impacts from Seavey Island which may have accumulated in the embayment.
- York Harbor: This data was evaluated to determine ecological impacts in a nearby estuarine system with similar ecological characteristics. This group was considered a reference data set.
- Great Bay estuary (mussel only): These data were evaluated to determine whether there were potential upstream contaminant sources.

The following summarized the tables that are presented in the HHRA report:

- Tables 3-3 through 3-37 present the analytical results (frequency of detection, minimum, maximum, and average concentrations, etc.) for each tissue data set.
- Tables 5A, 5-1 through 5-36 present the potential risks calculated for consumption of tissue, for both exposure scenarios (recreational and subsistence), and for each of the data sets. The

- tables present the cancer risks and non-cancer hazard quotients (HQ) for each chemical detected in the samples.
- Table 5-54 presents a summary of the chemicals that exceed risk goals of >1E-6 cancer risk and >1 HQ from consumption of tissue samples using the Lower Piscataqua River sample set. The chemicals exceeding the risk goals based on average concentrations and the recreational scenario are shown in Table 1 of this memorandum. Table 1 also presents the cancer risks and HQs for the background data set (Lower Piscataqua River Excluding Seavey Island and Clark's Island Embayment). [Note: The York Harbor cancer risks and HQs were presented as the background values for the whole lobster data set because risks to this receptor group were not calculated for the Lower Piscataqua River excluding Seavey Island and Clark's Island Embayment data set. The York Harbor samples were not analyzed for metals or PAHs, though, because of inadequate sample volume].
- Table 5-55 presents a summary of the chemicals that exceed the risk goals (>1E-6 cancer risk and >1 HQ) from consumption of tissue samples using the other data sets.
- Tables 5-60, 5-61, and 5-62 presents a comparison of the tissue concentrations in lobster tail, mussel, and flounder samples, respectively, across all the data sets.

In summary, average concentrations of a few chemicals in the tissue samples resulted in cancer risks > 1E-6 and HQs greater than 1.0 for recreational human receptors. However, the chemicals listed in Table 1 were generally detected at similar concentrations in the site samples and the background samples. The chemical concentrations between the different tissue data sets are presented on Tables 5-60 through 5-62 of the HHRA report and are discussed in more detail on pages 6-16 of the same report. Also, the text of the report (page 6-16) notes that the majority of arsenic in fish/shellfish is organic arsenic, which is the non-toxic form of arsenic. Because typically less than 10 percent of arsenic in fish/shellfish is inorganic arsenic, risks from arsenic in the HHRA report are greatly overestimated.

Phase I/Phase II Offshore Data Comparative Analysis Report

The Comparative Analysis report was prepared to determine whether the 1994 HHRA, which only used the Phase I data, needed to be updated to include the Phase II data. This was done by comparing the Phase I and Phase II data sets, and determining whether risks would differ significantly if both data sets were used. The comparison was done using data from the following media: lobster tail, lobster hepatopancreas, whole lobster, mussels, and flounder fillets. Risk ratios were calculated for the chemicals that increased in concentrations (either mean or maximum values) from Phase I to Phase II. The following is a summary of the evaluation:

- The Phase I and/or II data are presented on Tables 2-1 through 2-18.
 - Although the concentrations of most chemicals were lower in the Phase II samples, some chemicals did have greater concentrations in the Phase II samples. Also, some chemicals were not analyzed for in the Phase I samples but were detected in the Phase II samples (in particular, methyl mercury).
 - In general, mussels had the most chemicals with greater concentrations in the Phase II samples.
- Table 3-3 presents a summary of the risks using the Phase II data (Appendix C presents the risk calculations). Increases in Phase II concentrations resulted in the identification of:
 - The Phase I/Phase II Offshore Data Comparative Analysis Report concluded that a human health risk assessment using a combined Phase I and Phase II data set was not recommended.

- Three additional potential chemicals of concern (COPCs) (manganese, methyl mercury, and dibenzo(a,h)anthracene) and one additional major risk driver (methyl mercury).
 - Manganese was identified as a COPC in mussels because its maximum detected concentration resulted in an HQ that was greater than 1.0. However, the HQ based on the mean concentration and recreational exposure was 0.067.
 - Dibenzo(a,h)anthracene was considered a COPC in mussels because the cancer risk based on the mean concentration and recreational exposure was 4E-6.
 - Methyl mercury was a COPC and risk driver in lobster tail and whole lobster
 - Mean methyl mercury concentrations in juvenile lobster tail and whole juvenile lobster were 0.46 mg/kg and 0.42 mg/kg, respectively.
 - Methyl mercury concentrations in adult lobster (tail and whole) from the Lower Piscataqua River were lower than concentrations detected in adult lobster from the reference station (Isle of Shoals). Methyl mercury was not analyzed for in juvenile lobster from the Isle of Shoals. Because juvenile lobster are not generally consumed by humans and the adult lobster concentrations were less than acceptable risk levels (and reference concentrations), methyl mercury is not a concern at PNS from a human health perspective.

Public Health Assessment

The Agency for Toxic Substances and Disease Registry (ATSDR) conducted a public health assessment (PHA) at PNS to identify populations that may have been or could be exposed to hazardous substances from PNS and determine the public health implications of those exposures (ATSDR, 2007). ATSDR identified three exposure situations that required a more in-depth evaluation. Table 1 in the PHA presents the potential exposure pathways in more detail. One of these situations included the potential for people to consume fish and shellfish from the estuary of the Lower Piscataqua River surrounding PNS. Table 1 in the PHA presents the potential exposure pathways in more detail.

ATSDR evaluated the data from the various studies in which flounder, lobster, and mussel samples were collected to assess trends in contaminant concentrations in seafood of the Lower Piscataqua River. Tables 3 through 6 present the data that were evaluated from these studies, which included:

- PNS Phase I and Phase II Data: This is the same data discussed above in the HHRA and Phase I/Phase II Offshore Data Comparative Analysis Report.
- **Gulfwatch:** The Gulfwatch program is conducted by the Gulf of Maine Council on the Marine Environment and consists of monitoring contaminants in blue mussels along the News Hampshire and Maine coast since 1993. One of the sample locations includes Clark Island, at PNS. Samples evaluated for the PHA were collected from 1993 through 2000.
- Navy Interim Offshore Monitoring Program: As part of this program, the Navy collected blue
 mussel samples through seven sampling rounds from 14 monitoring stations around PNS and 4
 reference stations in the Great Bay Estuary. Samples evaluated for the PHA were collected from
 1999 through 2003.

ATSDR made the following conclusions based on their evaluation:

 Consumption of flounder (and similar fish) and lobster meat from the Lower Piscataqua River near PNS is not likely to result in adverse health effects in adults and children. This was based on calculations which showed that for both an adult and a child, the doses estimated for exposure to contaminants, including mercury and PCBs, were lower than those contaminants' screening values (ATSDR minimal risk levels or USEPA reference doses), and below levels associated with adverse health effects.

- Estimated exposure doses using the maximum levels for adult lobster tomalley and mussels showed levels above some comparison values. However, the mean mercury concentration did not exceed the FDA action level and the mean value was similar to the mean concentration of mercury found in the reference samples. This indicated that mercury concentrations in mussels found within the river, are on average, less than the FDA action level.
- Fish and shellfish data showed that levels of chemical contaminants near PNS were similar to other areas of the Piscatagua River.

Overall Summary

The three documents discussed above provide the information needed to support the conclusions of the HHRA for Portsmouth Naval Shipyard (PNS). Based on a review of these documents, it was conducted that risks to humans from consuming fish and shellfish from the Piscataqua River near PNS are within acceptable risk levels and/or are less than background concentrations.

References

ATSDR (Agency for Toxic Substances and Disease Registry), November 2007. Public Health Assessment for Portsmouth Naval Shipyard, Kittery, Maine, EPA Facility ID: ME7170022019. U.S. Department of Health and Human Services Public Health Service, Agency for Toxic Substances and Disease Registry.

McLaren/Hart, March 1994. Public Health and Environmental Risk Evaluation Part A: Human Health Risk Assessment for Portsmouth Naval Shipyard, Kittery, Maine. McLaren/Hart Engineering Corporation, Albany, New York.

NCCOSC (Naval Command, Control, and Ocean Surveillance Center), May 2000. Final Estuarine Ecological Risk Assessment for Portsmouth Naval Shipyard, Kittery, Maine. NCCOSC, Narragansett, Rhode Island.

Tetra Tech, October 1998. Phase I/Phase II Offshore Data Comparative Analysis Report for Portsmouth Naval Shipyard, Kittery, Maine. Tetra Tech NUS, Inc., King of Prussia, Pennsylvania.

Table 1

Chemicals Exceeding Risk Goals for Tissue Samples Collected in the Lower Piscataqua River - Recreational Exposure

Portsmouth Navay Shipyard, Kittery, Maine

		Lobste	er Tail			Whole L	-obster			Mus	sels			Flou	nder	
	Lower Pi	scataqua	Backgr	ound ⁽¹⁾	Lower Pi	iscataqua	Backgr	ound ⁽²⁾	Lower Pi	scataqua	Backgr	ound ⁽¹⁾	Lower Pi	scataqua	Backgr	ound ⁽¹⁾
		Non-		Non-		Non-		Non-		Non-		Non-		Non-		Non-
Chemical	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer	Cancer
Arsenic ⁽³⁾	2E-03	6.6	7E-04	3.2	2E-03	7.6	NZ ⁽⁴⁾	NZ ⁽⁴⁾	5E-04	2.1	5E-04	2.3	8E-04	8.8	7E-04	3.28
Aldrin			2E-06		1E-06				1E-06		5E-06		1E-06		2E-06	
4,4'-DDE					2E-06											
Benzo(a)anthracene	7E-05		2E-04		7E-05		NZ ⁽⁴⁾	NZ ⁽⁴⁾	4E-06		6E-06					
Benzo(a)pyrene	7E-05		2E-04		8E-05		NZ ⁽⁴⁾	NZ ⁽⁴⁾	2E-06		4E-06					
Chrysene	1E-04		3E-04		1E-04		NZ ⁽⁴⁾	NZ ⁽⁴⁾	8E-06		9E-06					
Indeno(1,2,3-cd)pyrene	2E-05		4E-05		3E-05		NZ ⁽⁴⁾	NZ ⁽⁴⁾								
Total PCBs (Aroclors)	3E-05		2E-05		3E-04		3E-05		5E-05		4E-05		8E-05		4E-05	

- 1 Background data set includes Lower Piscataqua River samples excluding Seavey Island and Clark's Island Embayment samples.
- 2 Background data set includes York Harbor risks because were not calculated for the Lower Piscataqua River excluding Seavey Island and Clark's Island Embayment data set.
- 3 The majority of arsenic in fish and shellfish (>90%) is organic arsenic, which is not toxic, which was not accounted for in the risk calculation. Therefore, arsenic risks are overestimaged.
- 4 There was inadequate sample volume to analyze the samples for these parameters.

--- - Cancer risk <1E-6 or HQ<1

NZ - Not Analyzed

Appendix D.2

Table 1-1. The route of exposure and measures of contaminants of concern (COC) concentrations that were conducted for the Estuarine ERA.

Route of Exposure	Measure of COC Concentration	
Surface Water	Estuarine surface water	
	Seep water	
<i>y</i> :	Residues in deployed blue mussel	
Sediment	Bulk sediment	
	Acid volatile sulfide - simultaneously extracted metal	
Biota	Residues in flounder liver and flesh	
	Residues in lobster hepatopancreas and flesh	
	Residues in native blue mussel	
	Residues in eelgrass leaf and root	
	Residues in fucoid algae	
	Residues in spartina leaves	

Table 1-2. The assessment endpoints, receptor species and measures of effect that were made for the Estuarine ERA.

Assessment Endpoint Receptor Species	Measure
Vitality of Pelagic Community	
Flounder	Flounder condition
Phytoplankton	Phytoplankton standing crop
Blue mussel	Water toxicity to deployed mussel growth
Sea urchin	Water toxicity to sea urchin gametes and larvae
/itality of Epibenthic Community	
Lobster	Lobster abundance and condition
Fucoid algae	Fucoid algae abundance
Blue mussel	Mussel abundance and condition
Vitality of Infaunal Benthic Community	
Infaunal benthic community	Species richness, abundance, and evenness
Amphipods	Sediment toxicity to amphipods
Vitality of Eelgrass	
Eelgrass	Eelgrass abundance and growth
Vitality of Salt Marsh Community	
Cord grass/Salt Hay	Cord grass/Salt Hay abundance and growth
Salt marsh community	Distribution of plants and invertebrates
Vitality of Avian Community	
Black Duck	Tissue concentrations in prey species
Canada Goose	Tissue concentrations in prey species
Herring Gull	Tissue concentrations in prey species
Osprey	Tissue concentrations in prey species

Table 1-3. Summary of risk from environmental media (surface water or sediment) for the areas of concern (AOC). The confidence in conclusion from the weight-of-evidence analysis for each exposure route is given and the potential risk drivers that could be linked to one or more SWMU(s) are listed.

AOC	Media	Magnitude of Risk	Confidence In Conclusion	Potential Risk Drivers with link to SWMUs
Clark	surface water	Low	Medium	seeps ¹ , Chromium, Nickel,
Cove	sediment	Low	High	Polychlorinated-Biphenyls
Sullivan	surface water	Low	Medium	,
Point	sediment	Intermediate	High	seeps ² , Copper, Mercury, Nickel, Phenanthrene
DRMO	surface water	Negligible	Medium	
Storage Yard	Suitace Water	·	Wedian	Lead
Dry Dock	surface water	Low	Medium	Copper, Mercury, Nickel, Zinc,
DOCK	sediment	Intermediate	High	Polychlorinated-Biphenyls Phenanthrene, Pyrene
Back Channel	surface water	Low	Medium	Mercury, Phenanthrene, Fluorene,
Onamie	sediment	Intermediate	High	Anthracene
Jamaica	surface water	Low	Medium	seeps ³ , Lead
Cove	sediment	Low	High	

¹ Because the seeps were not well characterized and they could be a direct route of release from some of the SWMUs, chemicals that exceeded chronic water quality criteria (WQC) in any of the seep samples were identified as potential risk drivers. Chemicals that exceeded WQC in seep samples from Clark Cove were Copper, Nickel, Mercury, and Zinc.

² Chemicals that exceeded WQC in seep samples from Sullivan Point were Copper, Mercury, and Zinc.

³ Chemicals that exceeded WQC in seep samples from Jamaica Cove were Copper, Nickel, Lead, and Zinc.

Table 4-1. Assessment Endpoints and Receptors of Concern used in the ecological risk assessment for Portsmouth Naval Shipyard.

Assessment Endpoint	Receptor of Concern	
Pelagic	Blue mussel (<i>Mytilus edulis</i>) Winter flounder (<i>Pleuronectes americanus</i>) Sea Urchin gametes (<i>Arbacia punctulata</i>) Phytoplankton community	
Epibenthic	Blue mussel Lobster (<i>Homarus americanus</i>) Fucoid algae (<i>Ascophyllum nodosum</i>) Winter flounder	
Benthic	Benthic infaunal community Amphipods (Ampelisca abdita)	
Eelgrass	Eelgrass (Zostera marina)	
Salt Marsh	Salt marsh community Cord grass (Spartina alterniflora) Salt Hay (Spartina patens)	
Avian	Black duck (<i>Anas rubripes</i>) Canada goose (<i>Branta</i> canadensis) Herring gull (<i>Larus argentatus</i>) Osprey (<i>Pandion haliaetus</i>)	

Table 4-2. Assessment endpoints and measures of effects.

Assessment Endpoint/Receptor	Measure
Vitality of Pelagic Community	
Flounder Phytoplankton Blue mussel Sea urchin	Flounder condition and histology Phytoplankton standing crop (Chlorophyll a) Water toxicity to deployed mussel physiology Water toxicity to sea urchin gametes and larvae
Vitality of Epibenthic Community	
Lobster Fucoid algae Blue mussel	Lobster abundance and condition Fucoid algae abundance Mussel abundance and condition
Vitality of Infaunal Benthic Community	
Infaunal benthic community Amphipods	Species richness, abundance, and evenness Sediment toxicity to amphipods
Vitality of Eelgrass	
Eelgrass	Eelgrass abundance and morphometrics
Vitality of Salt Marsh Community	
Cord grass/Salt Hay Salt marsh community	Cord grass/Salt Hay abundance and morphometrics Invertebrate abundance
Vitality of Avian Community	
Avian herbivores and predators	Tissue concentrations in prey species

Table 4-3. Measures of exposure concentrations.

Exposure Point	Exposure Measure
Surface Water	Inorganic COC chemistry
	COC residues in deployed blue mussel
	Temperature
	Salinity
	Nutrient concentration
	Current structure
	Microbial concentration
Sediment	Bulk organic and inorganic COC concentration
	AVS/SEM chemistry
	Organic carbon concentration
	Geotechnical characteristics (grain size, water content) and
	distribution of sediment
	Microbial concentration
Biota	COC residues in flounder liver and flesh
	COC residues in lobster hepatopancreas and flesh
	COC residues in blue mussel
	COC residues in eelgrass leaf and root
	COC residues in fucoid algae
	COC residues in Spartina leaves
	COC residues in diet of avian receptors

Table 7-1. Scheme used to interpret outcomes of measurement activities.

Type of Measure	Degree of Response	Interpretation	Numerical Value (M _i)	
Exposure	≤ reference condition or below conservative benchmark concentration	negligible exposure	0	
	> qualitative screening level	low exposure	1	
	statistically > reference condition	elevated exposure	2	
	> a conservative benchmark concentration	high exposure	3	
	> a nonconservative benchmark concentration	adverse exposure	4	
Effect	similar to reference condition or below ecologically-relevant threshold	no effect	0	
	worse than reference condition, but not statistically different ¹	potential effect	1	
	statistically worse than reference or control condition ¹	probable effect	2	

¹ The data from the AOC are evaluated to determine if there is a problem relative to the reference area. In some cases lower than reference is desirable (e.g. percent cover of other vascular plants in salt marsh lower than reference), while in other cases higher than reference is desirable (e.g. fucoid algae biomass higher than reference).

Table 7-2. Interpretation of exposure and effect evidence in determining risk.

		Evic	lence of Exposu	re	
Evidence of Effect	NEGLIGIBLE	LOW	ELEVATED	HIGH	ADVERSE
NO	Negligible	Negligible	Low	Low	Intermediate
POTENTIAL	Negligible	Low	Intermediate	Intermediate	High
PROBABLE	Low	Low	Intermediate	High	High

Table 7-3. Values of effect (EF_i) and exposure (EX_i) versus endpoint weights (EW_i). used for constructing scatter plots (A) and example calculation (B).

A. Values of effect (EF_i) and exposure (EX_i) versus endpoint weights (EW_i).

Effects Measures (x)	Exposure Measures (x)	Endpoint Weights (y)
Outcome = (EF _i)	Outcome = (EX _i)	Endpoint Weight = (EW _i)
No = 1	Negligible = 1	Low = 1
Potential = 2	Low = 2	Medium = 2
Probable = 3	Elevated = 3	High = 3
	High = 4	
	Adverse = 5	

B. An example calculation for measures of exposure and effects to the Pelagic Assessment Endpoint in Clark Cove.

Raw Data entered from s	ummary ta	ble (App	endix IX.1)			
	Effec	t		Exp	osure	
name	EF _i	EW _i	name	EX_{i}	EW_i	
Phytoplankton Biomass	1	1	Surface Water	1	2	
Deployed Mussel SFG	1	2	Deployed Mussel I	1.1	2	
Arbacia Toxicity	3	2	Deployed Mussel II	. 3	2	
			Seep	4	1	
Effect			Expos	sure		
Plotted Values offset by ·	.5 in x and	y directi	ion	•		
name	EF;	EW_i	name	EXi	EW_{i}	
Phytoplankton Biomass	0.5	0.5	Surface Water	0.5	1.5	
Deployed Mussel SFG	0.5	1.5	Deployed Mussel I	0.6	1.5	
Arbacia Toxicity	2.5	1.5	Deployed Mussel II	2.5	1.5	•
			Seep	3.5	0.5	
Arithmetic Average	1.3571	1.1667		1.43	1.25	
Weighted Average Calcu	lations to D)etermin	e Centroid Location			
· • • • • • • • • • • • • • • • • • • •	eighted Eff	ects	,	Veighted	Exposure	
name E	F _i Ef	F _i *EW _i		EX,	EX _i *EW _i	
Phytoplankton Biomass	0.5	0.25	Surface Water	1.5	0.75	
Deployed Mussel SFG	1.5	0.75	Deployed Mussel I	1.5	0.9	
Arbacia Toxicity	1.5	3.75	Deployed Mussel II	1.5	3.75	
-			Seep	0.5	1.75	
	$\Sigma EF_{i} \Sigma I$	EF; *EW;		ΣEX_i	Σ EX $_{i}$	
	į	. •		·	*EW;	
sum	3.5	4.75		5	7.15	
$(\Sigma EF_i * EW_i) / \Sigma EW_i$			$(\Sigma EX_i *EW_i)/\Sigma EW_i$			
sum(effects*ew)/sum(ew)		1.3571	sum(exp*ew)/sum(ev	v)	1.43	
e	ffect	ew		ехр	ew	
a · a	vg(W _x)	avg(y)	;	avg(W _x)	avg(y)	
Plotted Centroid	1.3571	1.1667		1.43	1.25	

Table 7-4. Summary of evidence of risk to assessment endpoints in the Clark Cove area of concern.

Assessment Endpoint	Evidence of Effect 1	Evidence of Exposure ²	Magnitude of Risk ³	Confidence in Conclusions ⁴	
Pelagic	Pelagic Potential/M		Low	Medium	
Epibenthic	No/M	Elevated/M Low		Medium	
Benthic	No/H	Elevated/M	Low	High ⁵	
Eelgrass Potential/M ⁶		Elevated/M	Intermediate	Medium	
Salt Marsh	Salt Marsh No/M		Low.	Medium	

¹ Entry obtained from scatter plot of effects measures versus the endpoint weights of the effects measures; Entry = effects measure/endpoint weight.

Table 7-5. Summary of evidence of risk to assessment endpoints in the Sullivan Point area of concern.

Assessment Endpoint	Evidence of Evidence of Exposure		Magnitude of Risk ¹	Confidence in Conclusions ¹
Pelagic	No/M	Low/L Negligible		Medium ²
Epibenthic	No/M	Elevated/M	Low	Medium
Benthic	Potential/H	High/M	Intermediate	High ³
Eelgrass	No/M	Elevated/M	Low	Medium
Salt Marsh	Salt Marsh Potential/M		Intermediate	Medium

¹ See Table 7-4 for description.

² Entry obtained from scatter plot of exposure measures versus the endpoint weights of the exposure measures. Entry = exposure measure/endpoint weight.

³Entry obtained from Table 7-2.

⁴ Confidence reflects the average of the endpoint weights for effects and exposure measures (e.g. average endpoint weight of columns [1] and [2]), the degree of concurrence among the weights (e.g. scatter of weights within columns [1] and [2]), the degree of concurrence between conclusions regarding magnitudes of exposure and effect (e.g. the balance between the average endpoint weight and the scatter of weights column [3]), and professional judgment used to qualify conclusions.

⁵ High concordance between highly weighted measures.

⁶ Eelgrass beds only present at station 3 in Clark Cove

² Medium confidence due to agreement between negligible estuarine surface-water concentrations and the absence of surface-water toxicity.

³ High confidence due to the concordance between exposure (bulk-sediment chemistry and predicted pore water toxicity) and effect (sediment toxicity) measures.

Table 7-6. Summary of evidence of risk to assessment endpoints in the DRMO Storage Yard area of concern.

Assessment Endpoint	Evidence of Effect ¹	Evidence of Exposure ¹	Magnitude of Risk ¹	Confidence in Conclusions ¹
Pelagic	No/M	Negligible/M	Negligible	Medium
Epibenthic	No/M	Elevated/M	Low	Medium
Benthic ²				
Eelgrass ²				
Salt Marsh ²				

Table 7-7. Summary of evidence of risk to assessment endpoints in the Dry Dock area of concern.

Effect ¹	Exposure 1	Magnitude of Risk ¹	Conclusions 1	
No/M	Negligible/M	Negligible	Medium	
No/M	Elevated/M	Low	Medium	
Potential/H	High/M	Intermediate	High ³	
No/M	Elevated/M	Low	Medium	
	No/M No/M Potential/H	No/M Negligible/M No/M Elevated/M Potential/H High/M	No/M Negligible/M Negligible No/M Elevated/M Low Potential/H High/M Intermediate	

¹See Table 7-4 for description.
²No sediment, eelgrass, or salt marsh habitat in this area of concern.

¹ See Table 7-4 for description.
² No salt marsh habitat in this area of concern.
³ High confidence due to the concordance between exposure (bulk-sediment chemistry and predicted pore water toxicity) and effect (sediment toxicity and low invertebrate density) measures.

Table 7-8. Summary of evidence of risk to assessment endpoints in the Back Channel area of concern.

Assessment Endpoint			Magnitude of Risk ¹	Confidence in Conclusions	
Pelagic	No/M	Negligible/M	Negligible	Medium	
Epibenthic	No/M	Elevated/M Low		Medium	
Benthic	Potential/H	High/M Intermediate		High ²	
Eelgrass	Potential/M	Elevated/M	Intermediate	Medium	
Salt Marsh	No/M	High/M	Low	Medium	

¹See Table 7-4 for description.

Table 7-9. Summary of evidence of risk to assessment endpoints in the Jamaica Cove area of concern.

Assessment Endpoint			Magnitude of Risk ¹	Confidence in Conclusions	
Pelagic	No/M	Low/M	Negligible	Medium	
Epibenthic	No/M	Elevated/M Low		Medium	
Benthic	No/H	Low/M	Negligible	High ²	
Eelgrass	No/M	Elevated/M	Low	Medium	
Salt Marsh	No/M	Elevated/M	Low	Medium	

^{*}See Table 7-4 for description.

² High confidence due to the concordance between exposure (bulk-sediment chemistry and predicted pore water toxicity) and effect (sediment toxicity) measures.

² High concordance between highly weighted measures of effect.

Table 7-10. Summary of evidence of risk to assessment endpoints for Portsmouth Harbor focus area.

Assessment Endpoint	Evidence of Effect ¹	Evidence of Exposure ¹	Magnitude of Risk ¹	Confidence in Conclusions ¹
Pelagic	No/M	Elevated/M	Low	Medium
Epibenthic	No/M	Elevated/M	Low	Medium
Benthic ²				
Eelgrass ²				•
Salt Marsh ²				
Avian	Not Evaluated	Negligible/M	Not Evaluated 3	Medium ⁴

¹ See Table 7-4 for description.

² Benthic, eelgrass, salt marsh endpoints not evaluated for Portsmouth Harbor focus area.

³ With the lack of effects information, the most conservative estimate of risk is Low.

⁴ Pertains to the confidence of exposure measures only.

Table 7-11. Numeric values assigned to the magnitude of risk to assessment endpoint (R_i) and confidence in risk to assessment endpoint conclusion (C_i) and lookup cut-off values for determining magnitude of risk from exposure medium (R_M) and confidence in risk from exposure medium conclusion (C_M) .

Magnitude of Risk to Assessment Endpoint (R _i)	Numeric Value ¹	Lookup Cut-Off Value ²	Magnitude of Risk from Exposure Medium (R _M)	Confidence in Risk to Assessment Endpoint Conclusion (C _i)	Numeric Value ¹	Lookup Cut-Off Value ²	Confidence in Risk from Exposure Medium Conclusion (C _M)
Negligible	0	< 0.50	Negligible	Low	1	< 1.667	Low
Low	1	< 1.25	Low	Medium	2	< 2.333	Medium
Intermediate	2	< 2.00	Intermediate	High	3	≤ 3.000	High
High	3	≤ 3.00	High				

¹ Numeric Value is used to convert qualitative statement to a quantitative value (e.g. "Negligible" to 0) for use in the weighted average equations for R_M and C_M .

Table 7-12. Weights (WM_i) used for calculating magnitude of risk from medium and confidence in conclusions.

Assessment Endpoint	Surface Water	Sediment
PELAGIC	2	0
EPIBENTHIC	1	1
BENTHIC	0	2
EELGRASS	1	· 1
SALTMARSH	1	1

² Lookup Cut-Off Value is used to convert the quantitative value derived for R_M and C_M into a qualitative statement (e.g. R_M = 1.6 to "Intermediate").

Table 7-13. Characterization of ecological risks associated with environmental media at Portsmouth Naval Shipyard by Area of Concern.

Area of Concern	Environmental Medium	Magnitude of Risk From Medium	Confidence In Conclusions
Clark Cove	Surface Water ¹	Low ²	Medium
	Sediment ³	Low	High
Sullivan Point	Surface Water	Low	Medium
	Sediment ³	Intermediate	High
DRMO⁴	Surface Water 1	Negligible	Medium
Dry Docks ⁵	Surface Water ¹	Low	Medium
	Sediment ³	Intermediate	High
Back Channel	Surface Water ¹	Low	Medium
	Sediment	Intermediate	High
Jamaica Cove	Surface Water ¹	Low	Medium
	Sediment ³	Low	High
Portsmouth	Surface Water ¹ Biota ⁷	Low	Medium
Harbor ⁶		Negligible	Medium

¹ Evidence of bioaccumulation in mussels is probably related to surface water exposure.

² Sediment resuspension may be influencing surface water risks.

³ Evidence of bioaccumulation in juvenile lobsters may be related to sediment exposure.

⁴ No sedimentary, eelgrass, or salt marsh habitat at DRMO.

⁵ No salt marsh habitat in Dry Dock area of concern.

⁶ Only pelagic, epibenthic, and avian assessment endpoints were evaluated for Portsmouth Harbor focus area.

⁷ Biota evaluated as dietary exposure to avian receptors.

Table 8-1. Summary of AOCs with Low or Intermediate levels of risk, the confidence in the conclusion, and potential risk drivers that can be linked to one or more SWMU(s).

AOC	Media	Magnitude of Risk	Confidence In Conclusion	Potential Risk Drivers with link to SWMUs
Clark Cove	surface water sediment	Low Low	Medium High	seeps ¹ ,Cr, Ni, tPCB
Sullivan Point	surface water sediment	Low Intermediate	Medium High	seeps ² , Cu, Hg, Ni, PHEN
Dry Dock	surface water sediment	Low Intermediate	Medium High	Cu, Hg, Ni, Zn, tPCB, PHEN, PYRENE
Back Channel	surface water sediment	Low Intermediate	Medium High	Hg, PHEN, FLUOR
Jamaica Cove	surface water sediment	Low Low	Medium High	seeps ³ , Pb

¹ Chemicals exceeding WQC in Clark Cove seep samples were Cu, Ni, Hg, and Zn.

² Chemicals exceeding WQC in Sullivan Point seep samples were Cu, Hg, and Zn.

³ Chemicals exceeding WQC in Jamaica Cove seep samples were Cu, Ni, Pb, and Zn.

Applicable or Relevant and Appropriate Requirements

DREDGING CONTAMINATED SEDIMENT WITH OFF-YARD DISPOSAL FOR MS-01, MS-03, MS-04, MS-12 (A and B) CHEMICAL, LOCATION, AND ACTION-SPECIFIC ARARS OPERABLE UNIT 4 RECORD OF DECISION PORTSMOUTH NAVAL SHIPYARD, KITTERY, MAINE PAGE 1 OF 8

Medium/Activity	Requirement/Citation	Status	Synopsis	Evaluation/Action To Be Taken	
FEDERAL AND STATE CHEMICAL-SPECIFIC ARARS and TBCs: No ARARS or TBCs					

FEDERAL LOCATION-SPECIFIC ARARs and TBCs

Coastal Zone	Coastal Zone Management Act [16 United States Code (USC) 1451 et seq.]	Applicable	This act provides for the preservation and protection of coastal zone areas. Federal activities that are in or directly affecting the coastal zone must be consistent, to the maximum extent practicable, with a federally approved state management program.	Dredging of sediment that will take place in the coastal zone will include activities to reduce adverse impacts. Maine Department of Environmental Protection (MEDEP) will review remedial action documents, including work plans, to meet the substantive requirements of this act.
Navigable Waters	Rivers and Harbors Act Section 10 [33 USC 403; 33 Code of Federal Regulations (CFR) 322 and 323]	Applicable	These regulations control unauthorized obstruction or alteration of navigable waters. Activities involving structures or work in or affecting navigable waters, excavation or deposition of materials in navigable waters are regulated under these requirements.	Remedial activities, including dredging and sediment dewatering, will be conducted such that navigable waters will not be obstructed or altered.

DREDGING CONTAMINATED SEDIMENT WITH OFF-YARD DISPOSAL FOR MS-01, MS-03, MS-04, MS-12 (A and B) CHEMICAL, LOCATION, AND ACTION-SPECIFIC ARARS OPERABLE UNIT 4 RECORD OF DECISION PORTSMOUTH NAVAL SHIPYARD, KITTERY, MAINE PAGE 2 OF 8

Medium/Activity	Requirement/Citation	Status	Synopsis	Evaluation/Action To Be Taken
Wetlands and US Waters	Clean Water Act (CWA) Section 404(b)(1) Guidelines for Specification of Disposal Sites for Dredged or Fill Material (40 CFR Part 230)	Applicable	These regulations outline the requirements for the discharge of dredged or fill material into US waters including wetlands. No activity that adversely affects a wetland is permitted if a practicable alternative that has less effect is available. If there is no other practicable alternative, impacts must be mitigated.	Dredging at MS-01, MS-12A, and MS-12B will not adversely impact wetlands in these offshore areas. Dredging at MS-03/MS-04 will be conducted in a mudflat and the 2003 wetlands functions and values assessment for this area (as part of the OU7/Site 32 Remedial Investigation) will be used to guide mitigative efforts if wetlands could be adversely impacted during remedial activities.
Other Natural Resources	The Endangered Species Act of 1973 (16 USC 1531 et seq.; 50 CFR Part 107 and 402)	Applicable	Provides for consideration of impacts to endangered and threatened species and their critical habitats. Requires federal agencies to ensure that any action carried out by the agency is not likely to jeopardize the continued existence of any endangered or threatened species or adversely affect its critical habitat. The entire State of Maine is considered a habitat of the federally-listed endangered short-nosed sturgeon. The Gulf of Maine population of Atlantic sturgeon is listed as threatened species.	There are no known endangered, threatened, or protected species or critical habitats within the boundaries of PNS. However, short-nosed and Atlantic sturgeons are present in the Piscataqua River. Remedial activities including dredging and dewatering will be conducted so as to avoid any adverse effect under the act to the short-nosed and Atlantic sturgeon.

DREDGING CONTAMINATED SEDIMENT WITH OFF-YARD DISPOSAL FOR MS-01, MS-03, MS-04, MS-12 (A and B) CHEMICAL, LOCATION, AND ACTION-SPECIFIC ARARS OPERABLE UNIT 4 RECORD OF DECISION PORTSMOUTH NAVAL SHIPYARD, KITTERY, MAINE PAGE 3 OF 8

Medium/Activity	Requirement/Citation	Status	Synopsis	Evaluation/Action To Be Taken
Other Natural Resources	Fish and Wildlife Coordination Act (16 USC 661 et seq.)	Applicable	This act requires any federal agency proposing to modify a body of water to consult with the United States Fish and Wildlife Service (USFWS) or National Marine Fisheries Service and appropriate state agencies if alteration of a body of water, including discharge of pollutants into a wetland or construction in a wetland, will occur as a result of off-site remedial activities. Consultation is strongly recommended for onsite actions.	Dredging and dewatering will be conducted to prevent discharge of pollutants to a wetland. The Navy will coordinate with USFWS during the preparation of remedial action documents.
Protection of Wetlands	44 CFR 9	Relevant and Appropriate	Federal Emergency Management Agency (FEMA) regulations that set forth the policy, procedure, and responsibilities to implement and enforce Executive Order 11990, Protection of Wetlands.	Remedial activities at MS-01 and MS-03/MS-04, such as dredging and access for equipment conducted within federal jurisdictional wetlands will be implemented in compliance with these standards.

DREDGING CONTAMINATED SEDIMENT WITH OFF-YARD DISPOSAL FOR MS-01, MS-03, MS-04, MS-12 (A and B) CHEMICAL, LOCATION, AND ACTION-SPECIFIC ARARS OPERABLE UNIT 4 RECORD OF DECISION PORTSMOUTH NAVAL SHIPYARD, KITTERY, MAINE PAGE 4 OF 8

Medium/Activity	Requirement/Citation	Status	Synopsis	Evaluation/Action To Be Taken		
STATE LOCATIO	STATE LOCATION-SPECIFIC ARARs and TBCs					
Natural Resources	Maine Natural Resources Protection Act Permit by Rule Standards [38 Maine Revised Statutes Annotated (MRSA) 480 et seq.; 06-096 Code of Maine Rules (CMR) 305 1, 2, and 8]	Applicable	This act regulates activity conducted in, on, or over any protected natural resource or any activity conducted adjacent to and operated in such a way that material or soil may be washed into any freshwater or coastal wetland, great pond, river, stream, or brook.	Dredging and construction near to shoreline for MS-01, MS-03/MS-04, and MS-12A will be conducted so as to avoid washing any soil into the nearby Piscataqua River. Stormwater management and erosion control practices would be used to prevent sediment from entering the river or adjacent wetlands during construction.		
Coastal Zone	Maine Coastal Management Policies (38 MRSA 1801 et seq.) (06-096 CMR Chapter 1000)	Applicable	Regulates activities near great ponds, rivers and larger streams, coastal areas, and wetlands. Regulates shoreland activities and development, including (but not limited to) water pollution prevention and control, wildlife habitat protection, and freshwater and coastal wetlands protection. The law is administered at the local government level. Shoreland areas include areas within 250 feet of the normal high-water line of any river or saltwater body and areas within 75 feet of the high-water line of a stream.	Dredging and dewatering that may affect storm water runoff, erosion and sedimentation, and surface water quality will be controlled according to these regulations.		

DREDGING CONTAMINATED SEDIMENT WITH OFF-YARD DISPOSAL FOR MS-01, MS-03, MS-04, MS-12 (A and B) CHEMICAL, LOCATION, AND ACTION-SPECIFIC ARARS OPERABLE UNIT 4 RECORD OF DECISION PORTSMOUTH NAVAL SHIPYARD, KITTERY, MAINE PAGE 5 OF 8

Medium/Activity	Requirement/Citation	Status	Synopsis	Evaluation/Action To Be Taken
Wetlands	Maine Wetland Protection Rules (06 096 CMR Part 310)	Applicable	Standards are provided for protection of wetlands, as defined in MEDEP Chapter 1000 Guidelines for Municipal Shoreline Zoning Ordinances. Jurisdiction under the rules includes the area adjacent to the wetlands, which is the area within 75 feet of the normal high-water line. Activities that have an unreasonable impact on wetlands are prohibited.	Remedial activities for MS-01, MS-03/MS-04, and MS-12 (A and B) will be conducted to avoid impacts to wetlands and coastal wetlands which include tidal and subtidal lands. No functional assessment or compensation will be required based on the exception in Part 310 (5)(C)(6)(b).
	N-SPECIFIC ARARs and TBC	1		
Surface Water	CWA (33 USC 1251 et seq.) National Recommended Water Quality Criteria (NRWQC)	Applicable	These criteria are used to establish water quality standards for the protection of aquatic life.	Remedial activities, including dredging and dewatering, will be conducted to reduce adverse impacts to the Piscataqua River. Stormwater management, erosion controls, and management of water discharges will be included in remedial activities, as appropriate.
Water Management	CWA Section 402 National Pollutant Discharge Elimination System (NPDES) (40 CFR 122.41, 122.44, and 122.45)	Applicable	Discharges to surface water must meet the substantive requirements of the NPDES program. These sections describe conditions applicable to all permits, establishing limitations, standards, and other permit conditions, and calculating permit conditions.	These regulations will be applicable to water management during dredging where discharges of treated water to a surface water body may occur. The substantive requirements will be met if any discharges of treated water to surface water bodies are required.

DREDGING CONTAMINATED SEDIMENT WITH OFF-YARD DISPOSAL FOR MS-01, MS-03, MS-04, MS-12 (A and B) CHEMICAL, LOCATION, AND ACTION-SPECIFIC ARARS OPERABLE UNIT 4 RECORD OF DECISION PORTSMOUTH NAVAL SHIPYARD, KITTERY, MAINE PAGE 6 OF 8

Medium/Activity	Requirement/Citation	Status	Synopsis	Evaluation/Action To Be Taken
Water Management	CWA General Pretreatment Regulations for Existing and New Sources of Pollution (40 CFR 403.5 – National Pretreatment Standards)	Applicable	The regulations provide general pretreatment requirements for discharge to publically owned treatment works (POTW).	These regulations will be applicable to water management during dredging where discharges to the sanitary sewer system may occur. The substantive requirements will be met if any discharges to the sanitary sewer are required.
Water Management	NPDES (Storm water Permitting) 40 CFR 122.26	Applicable	Describes storm water discharge requirements from construction activities that disturb more than 1 acre.	Storm water management will be implemented to minimize discharges of contaminants to the Piscataqua River and meet the substantive requirements of a general permit. Less than 1 acre will be disturbed at MS-01, MS-03/MS-04, MS-12A, and MS-12B; however, the combined area may be greater than 1 acre.

DREDGING CONTAMINATED SEDIMENT WITH OFF-YARD DISPOSAL FOR MS-01, MS-03, MS-04, MS-12 (A and B) CHEMICAL, LOCATION, AND ACTION-SPECIFIC ARARS OPERABLE UNIT 4 RECORD OF DECISION PORTSMOUTH NAVAL SHIPYARD, KITTERY, MAINE PAGE 7 OF 8

Medium/Activity	Requirement/Citation	Status	Synopsis	Evaluation/Action To Be Taken
STATE ACTION-S	SPECIFIC ARARs and TBCs			
Hazardous Waste	Identification of Hazardous Wastes CMR 06-096 Part 850	Applicable	These standards establish requirements for determining whether wastes are hazardous based on either characteristic or listing.	Wastes generated during remedial activities will be analyzed to determine whether they are Resource Conservation and Recovery Act (RCRA) characteristic hazardous wastes. If determined to be hazardous, then the waste will be managed in accordance with regulatory requirements.
	Standards for Generators of Hazardous Waste 38d MRSA 1301 <i>et seq.</i> , CMR 06-096 Part 851 (5) and (8))	Applicable	These regulations contain requirements for the generators of hazardous waste.	Waste determined to be hazardous will be managed on site, according to the regulation, until disposal offsite.
Erosion	Erosion and Sedimentation Control (38 MRSA Part 420- C)	Applicable	Erosion control measures must be in place before activities such as filling, displacing, or exposing soil or other earthen materials occur. Prior MEDEP approval is required if the disturbed area is in the direct watershed of a body of water most at risk for erosion or sedimentation.	Erosion and sedimentation controls will be used for dredging and stockpiling dredge material. Applicable plans will be coordinated with MEDEP before implementation.

DREDGING CONTAMINATED SEDIMENT WITH OFF-YARD DISPOSAL FOR MS-01, MS-03, MS-04, MS-12 (A and B) CHEMICAL, LOCATION, AND ACTION-SPECIFIC ARARS OPERABLE UNIT 4 RECORD OF DECISION PORTSMOUTH NAVAL SHIPYARD, KITTERY, MAINE PAGE 8 OF 8

Medium/Activity	Requirement/Citation	Status	Synopsis	Evaluation/Action To Be Taken
Storm Water Management	Storm Water Management (38 MRSA Part 420-D; 06- 096 CMR Part 500)	Applicable	Storm water management measures must be in place before activities such as filling, displacing, or exposing soil or other earthen material occur on land greater than or equal to 1 acre.	Although the individual disturbed areas and areas needed for dewatering are each less than 1 acre, the combined area for MS-01, MS-03/MS-04, MS-12A, and MS-12B may be greater than 1 acre. Applicable plans will be coordinated with MEDEP before implementation.
Air Emissions	Visible Emissions Regulation (38 MRSA 584; 06-096 CMR 101).	Applicable	These regulations establish opacity limits for emissions from several categories of air contaminant sources, including general construction activities.	These regulations will be considered for sediment handling. These standards will be met if any of the activities result in emission of particulate matter and fugitive matter to the atmosphere (e.g., dust generation).
Water Management	Maine Discharge Licenses (38 MRSA 413 et seq.) and Waste Discharge Permitting Program [06-096 CMR 523 (Waste Discharge License Conditions) Sections 2, 5, and 6; and 06-096 CMR 528 (Pretreatment Program) Section 6]	Applicable	These standards regulate the discharge of pollutants from point sources to surface POTW.	Water discharged from sediment dewatering will be treated to meet these requirements. The substantive requirements will be met for any discharges of treated water to surface water or a POTW.

Appendix F Alternative Calculations and Cost Estimates

CLIENT:	ı	Portsmouth Naval	Shipyard	JOB NUMBER:	112G00932.0000.1101
SUBJECT:			OU-	-4: MS-01	
BASED ON:		OU-4 FS SECT	ION 4	DRAWING NUMBER	.
BY: Date:	TJR 4-2010	CHECKED BY: Date;	1/6/10	APPROVED BY:	DATE:

Alternative MS01-03 - Hydraulic Dredging with Off-Yard Disposal

Capital Cost

Pre-Construction Sampling

Labor, Materials, & Equipment per round (sediment sampling from boat)

Assume 3 days to sample with 3 people (1 to travel, 2 local), plus 1 day of preparations

Analytical

Collect 10 sediment samples and analyze for PAHs.

type	cost each	number	tota	l
PAHs	\$150	10	\$1,500	
		,	\$1,500	_
			2	fast turn
		·	\$3,000	_
20% C	QA/QC & Data	Validation	\$600	_
			\$3,600	_

Site Work

Dredge contaminated sediment, pumping sediment into geotubes on a dewatering pad. Collect one water sample and 3 soil/sediment samples for confirmation testing.

Analytical Costs - per sample

Parameter	Unit Cost
PAHs	\$ 150.00
	\$ 150.00
	2_fast turn
	\$ 300

Assume no treatment of the water is required prior to discharge.

Allow tubes to dewater for 30 days. Mix 5% fly ash by volume to complete dewatering.

sediment volume	1,760	су
percent water	20%	
solid volume	1,408	cy
5% fly ash	70	су
disposal volume	1,478	cy or
	1,774	tons (at 1.2 tons/cy)

CALCULATION SHEET

CLIENT:	F	Portsmouth Naval	Shipyard	JOB NUMBER:	112G00932.0000.1101
SUBJECT:			OU-4	I: MS-01	
BASED ON:		OU-4 FS SECTI	ON 4	DRAWING NUMBER	R:
BY: Date:	TJR 4-2010	CHECKED BY: Date:	11/0/1/10	APPROVED BY:	DATE:

Collect one sediment sample for disposal testing. Assume sediment is nonhazardous for disposal.

Parameter	Unit Cost
TCLP	\$ 850.00
	\$ 850.00
	2 fast turn
	\$ 1.700

Time to complete work

Mob & Setup	10	days
Hydraulic Dredge	3	days
Geotube Dewatering	30	days
Mix fly ash & load for disposal	5	days
Demob_	5	days
_	53	days
or	11	Weeks
or	3	Month

Kittery, Maine OU-4

Alternative MS01-03: Hydraulic Dredging with Off-Yard Disposal Capital Cost

	Unit Cost						Extended Cost				
ltem	Quantity	Unit	Subcontract	Material Labor Equipment						Equipment	ment Subtotal
1 PROJECT PLANNING & DOCUMENTS									Lubor	_quipinom	Cubion
1.1 Prepare Work Plans	300	hr			\$37.00		\$0	\$0	\$11,100	\$0	\$11,100
1.2 Construction Completion Report	150	hr			\$37.00		\$0 \$0	\$0 \$0	\$5,550	\$0 \$0	\$5,550
1.3 Pre-Construction Sampling (10 samples)	1	ls	\$3,600.00	\$8,375.00	\$900.00	\$8,400.00	\$3,600	\$8.375	\$900	\$8.400	
2 MOBILIZATION AND DEMOBILIZATION	'	13	φ3,000.00	φο,373.00	φ 5 00.00	\$6,400.00	\$3,000	Ф 0,373	φθυσ	Ф 0,400	\$21,275
2.1 Site Support Facilities (trailers, phone, electric, etc.)	1	ls		\$1,000.00		\$3,500.00	\$0	\$1,000	¢ο	# 0 E00	#4.50
2.2 Equipment Mobilization/Demobilization	3	ea		φ1,000.00	\$170.00	\$5,500.00 \$522.00	\$0 \$0	\$1,000	\$0 \$510	\$3,500	\$4,500
2.3 Dredge Equipment Mobilization/Demobilization	1	ea	\$5,200.00		\$170.00	\$522.UU	•	\$0 \$0		\$1,566	\$2,076
3 FIELD SUPPORT	•	ea	φ5,200.00				\$5,200	\$0	\$0	\$0	\$5,200
3.1 Office Trailer	3	mo				#07F 00	••	••	••	A 4.40=	A.
3.2 Field Office Equipment, Utilities, & Support	3			#470.00		\$375.00	\$0	\$0	\$0	\$1,125	\$1,125
3.3 Storage Trailer	3	mo		\$470.00		***	\$0	\$1,410	\$0	\$0	\$1,410
3.4 Utility Connection/Disconnection (phone/electric)	1	mo	A4 050 00			\$99.00	\$0	\$0	\$0	\$297	\$297
3.5 Site Superintendent	'	ls	\$1,250.00	6 400.00	****		\$1,250	\$0	\$0	\$0	\$1,250
	53	day		\$188.00	\$384.64		\$0	\$9,964	\$20,386	\$0	\$30,350
3.6 Site Health & Safety and QA/QC	23	day		\$188.00	\$307.68		\$0	\$4,324	\$7,077	\$0	\$11,40 1
4 DECONTAMINATION								_			
4.1 Decontamination Services	1	mo		\$1,220.00	\$2,245.00	\$1,550.00	\$0	\$1,220	\$2,245	\$1,550	\$5,018
4.2 Temporary Equipment Decon Pad	1	is		\$1,500.00	\$2,000.00	\$300.00	\$0	\$1,500	\$2,000	\$300	\$3,800
4.3 Decon Water	1,000	gal		\$0.20			\$0	\$200	\$0	\$0	\$200
4.4 Decon Water Storage Tank, 6,000 gallon	1	mo				\$781.00	\$0	\$ 0	\$0	\$781	\$781
4.5 Clean Water Storage Tank, 4,000 gallon	1	mo				\$706.00	\$0	\$0	\$0	\$706	\$706
4.6 Disposal of Decon Waste (liquid & solid) 5 SEDIMENT EXCAVATION	1	mo	\$950.00				\$950	\$0	\$0	\$0	\$950
5.1 Bathymetric Survey (pre-removal)	1	ea	\$5,000.00				\$5,000	\$0	\$0	\$0	\$5,000
5.2 Hydraulic Dredging	1,760	cy	\$45.00				\$79,200	\$0	\$0	\$0	\$79,200
5.3 Geotube, 60' by 100'	3	ea	*	\$4.800.00			\$0	\$14,400	\$0	\$0	\$14.400
5.4 Dewatering Pad	2,900	sy		\$6.12	\$10.26	\$2.97	\$0	\$17,748	\$29,754	\$8,613	\$56,115
5.5 Turbidity Curtain	1,000	ft		\$39.90	*	4	\$0	\$39,900	\$0	\$0	\$39,900
5.6 Turbidity Monitoring Buoy	1	mo		400.00		\$4,080.00	\$0	\$0	\$0	\$4,080	\$4,080
5.7 Test Dewatering Fluid	1	ea	\$300.00	\$50.00	\$100.00	\$50.00	\$300	\$50	\$100	\$50	\$500
5.8 Confirmation Sample, Soil/Sediment	3	ea	\$300.00	\$50.00	\$100.00	\$50.00	\$900	\$150	\$300	\$150	\$1,500
5.9 Site Labor, (3 laborers)	39	day	4000.00	φου.σσ	\$252.80	400.00	\$0	\$0	\$9.859	\$0	\$9,859
5.10 Bathymetric Survey (post-removal)	1	ea	\$5,000.00		ΨΕΟΣ.ΟΟ		\$5,000	\$0	ψ9,039 \$0	\$0 \$0	\$5,000
6 DISPOSAL	•		40,000.00				ψ5,000	ΨΟ	ΨΟ	ΨΟ	Ψ0,000
6.1 Fly Ash	70	су		\$60.00			\$0	\$4,200	\$0	\$0	\$4,200
6.2 Loader, 4.5 cy	5	day		Ψ00.00	\$330.80	\$854.40	\$0	\$4,200 \$0	\$1,654	\$4,272	\$5,926
6.3 Excavator, 1.5 cv	5	day			\$330.80	\$865.80	\$0 \$0	\$0 \$0	\$1,654	\$4,329	\$5,983
6.4 Site Labor, (2 laborers)	10	day			\$252.80	\$600.60	\$0 \$0	\$0 \$0	\$2,528		
6.5 Disposal Sampling, TCLP	1	ea	\$1,700.00	\$50.00	\$100.00	\$50.00	**	• -		\$0 **50	\$2,528
6.6 Transportation & Disposal of Sediment, Subtitle "D"	1,774	ton	\$50.00	\$30.00	\$100.00	φου.υυ	\$1,700 \$88,700	\$50 \$0	\$100 \$0	\$50 \$0	\$1,900 \$88,700
Subtotal							\$191,800	\$104,491	\$95,717	\$39,769	\$431,777
Overhead on Labor Cost @ 3	10%						•	\$10,449			\$10,449
G & A Cost @ 1							\$19,180	\$10,449	\$9,572	\$3,977	\$43,178
Tax on Materials and Equipment Cost @ 5							Ψ13,100	\$5, <u>22</u> 5	ψ3,31Z	\$3,977 \$1,988	\$7,213
Total Direct Cost							\$210,980	\$130,614	\$105,288	\$45,734	\$492,617

OU-4
Alternative MS01-03: Hydraulic Dredging with Off-Yard Disposal
Capital Cost

	Item	Quantity	Unit	Subcontract	Unit Cost Material	Labor	Equipment	Subcontract	Extended Co			2
	NO.	Guaritity	Offic	Subcontract	Material	Labor	Equipment	Subcontract	Material	Labor	Equipment	Subtotal
	Indirects on Total Direct Cost @ Profit on Total Direct Cost @		(exclud	ing transportatio	n and disposal cost)							\$100,742
	Tom on Total Direct Cost &	10/6									_	\$49,262
Subtotal					•							\$642,620
	Health & Safety Monitoring @	2%										\$12,852
Total Field Cost												\$655,472
	ntingency on Total Field Costs @											\$196,642
E	ngineering on Total Field Cost @	10%									_	\$65,547
TOTAL CAPITAL CO	OST											\$917,661

CALCULATION SHEET

CLIENT:	P	ortsmouth Na	aval Shipya	JOB NUMBER: 112G00932.0000.1101				
SUBJECT:			•	OU-4: MS-0	03 and MS-04			
BASED ON:		OU-4 FS S	ECTION 5		DRAWING NUMBER:			
BY: Date:	TJR 11-09 & 6-12	CHECKED BY: Date:	agm	4/8/12	APPROVED BY:	DATE:		

Alternative MS0304-03 - Hydraulic Dredging with Off-Yard Disposal

Capital Cost

Pre-Construction Sampling

Labor, Materials, & Equipment per round (sediment sampling)

Assume 2 days to sample with 2 people (1 to travel, 1 local), plus 1 day of preparations

Analytical

Collect sediment samples and analyze for PAHs & copper.

type	cost each	number	total	
PAHs	\$150	6	\$900	
copper	\$20	20	\$400	
		-	\$1,300	-
		_	2	fast turn
		_	\$2,600	-
20% C	A/QC & Data	Validation_	\$520	_
		_	\$3,120	_

Dredge contaminated sediment, pumping sediment into geotubes on a dewatering pad. Collect one water sample and 3 soil/sediment samples for confirmation testing.

Analytical Costs - Dewatering Fluid

Parameter	Unit Cost
PAHs	\$ 150.00
Metals	\$ 125.00
	\$ 275.00
	2_fast turn
	\$ 550.00

Assume no treatment of the water is required prior to discharge.

Allow tubes to dewater for 30 days. Mix 5% fly ash by volume to complete dewatering.

sediment volume	1,270	су
percent water	20%	•
solid volume	1,016	су
5% fly ash	51	су
disposal volume	1,067	cy or
	1,280	tons (at 1.2 tons/cy)

PAGE 3 OF 3

CLIENT:	Р	ortsmouth Na	val Shipya	ırd	JOB NÚMBER:	112G00932.0000.1101
SUBJECT:				OU-4: MS	-03 and MS-04	
BASED ON:		OU-4 FS SE	CTION 5		DRAWING NUMBER:	:
BY: Date:	TJR 11-09 & 6-12	CHECKED BY: Date:	AM	6/8/12	APPROVED BY:	DATE:

Collect one sediment sample for disposal testing. Assume sediment is nonhazardous for disposal.

Parameter	Unit Cost	
TCLP	\$ 850.00	
	\$ 850.00	
	2 fa:	st turn
	\$ 1.700	

Time to complete work

Mob & Setup	10	days
Hydraulic Dredge	3	days
Geotube Dewatering	30	days
Mix fly ash & load for disposal	5	days
Demob	5	days
	53	days
or	11	Weeks
or	3	Month

Kittery, Maine OU-4

Alternative MS0304-03: Hydraulic Dredging with Off-Yard Disposal Capital Cost

Capital Cost	Т	ı		Unit Co	ost			Extended	Cost	-1	
ltem	Quantity	Unit	Subcontract	Material		Equipment	Subcontract	Material_	Labor	Equipment	Subtota
1 PROJECT PLANNING & DOCUMENTS					-						-
1.1 Prepare Work Plans	300	hr			\$37.00		\$0	\$0	\$11,100	\$0	\$11,100
1.2 Construction Completion Report	150	hr			\$37.00		\$0	\$0	\$5,550	\$0	\$5,550
1.3 Pre-Construction Sampling (10 samples)	1	ls	\$3,120.00	\$1,875.00	\$2,740.00	\$200.00	\$3,120	\$1,875	\$2,740	\$200	\$7,935
2 MOBILIZATION AND DEMOBILIZATION											
2.1 Site Support Facilities (trailers, phone, electric, etc.)	1	ls		\$1,000.00		\$3,500.00	\$0	\$1,000	\$0	\$3,500	\$4,500
2.2 Equipment Mobilization/Demobilization	3	ea			\$170.00	\$522.00	\$0	\$0	\$510	\$1,566	\$2,076
2.3 Dredge Equipment Mobilization/Demobilization	1	ea	\$5,200.00				\$5,200	\$0	\$0	\$0	\$5,200
3 FIELĎ SUPPORT											
3.1 Office Trailer	3	mo				\$375.00	\$0	\$0	\$0	\$1,125	\$1,125
3.2 Field Office Equipment, Utilities, & Support	3	mo		\$470.00			\$0	\$1,410	\$0	\$0	\$1,410
3.3 Storage Trailer	3	mo				\$99.00	\$0	\$0	\$0	\$297	\$297
3.4 Utility Connection/Disconnection (phone/electric)	1	ls	\$1,250.00				\$1,250	\$0	\$0	\$0	\$1,250
3.5 Site Superintendent	53	day	* - ,	\$188.00	\$384.64		\$0	\$9,964	\$20,386	\$0	\$30,350
3.6 Site Health & Safety and QA/QC	23	day		\$188.00	\$307.68		\$0	\$4,324	\$7,077	\$0	\$11,401
4 DECONTAMINATION		,		*	•		• -	• •-	, ,		
4.1 Decontamination Services	1	mo		\$1,220.00	\$2,245.00	\$1,550.00	\$0	\$1,220	\$2,245	\$1,550	\$5,015
4.2 Temporary Equipment Decon Pad	•	ls		\$1,500.00	\$2,000.00	\$300.00	\$0	\$1,500	\$2,000	\$300	\$3,800
4.3 Decon Water	1,000	gal		\$0.20	+ -,	*	\$0	\$200	\$0	\$0	\$200
4.4 Decon Water Storage Tank, 6,000 gallon	1	mo		¥44		\$781.00	\$0	\$0	\$0	\$781	\$781
4.5 Clean Water Storage Tank, 4,000 gallon	1	mo				\$706.00	\$0	\$0	\$0	\$706	\$706
4.6 Disposal of Decon Waste (liquid & solid)	Ì	mo	\$950.00			*******	\$950	\$0	\$0	\$0	\$950
5 SEDIMENT EXCAVATION	·	•	*******				*	* -	•	* -	
5.1 Bathymetric Survey (pre-removal)	1	ea	\$5,000.00				\$5,000	\$0	\$0	\$0	\$5,000
5.2 Hydraulic Dredging	1.270	су	\$45.00				\$57,150	\$0	\$0	\$0	\$57,150
5.3 Geotube, 60' by 100'	2	ea	V 10.00	\$4,800.00			\$0	\$9,600	\$0	\$0	\$9,600
5.4 Dewatering Pad	2,000	sy		\$6.12	\$10.26	\$2.97	\$0	\$12,240	\$20,520	\$5,940	\$38,700
5.5 Turbidity Curtain	1,000	ft		\$39.90	•	• -	\$0	\$39,900	\$0	\$0	\$39,900
5.6 Turbidity Monitoring Buoy	1	mo		•		\$4,080.00	\$0	\$0	\$0	\$4,080	\$4,080
5.7 Test Dewatering Fluid	1	ea	\$550.00	\$50.00	\$100.00	\$50.00	\$550	\$50	\$100	\$50	\$750
5.8 Confirmation Sample, Soil/Sediment	3	ea	\$550.00	\$50.00	\$100.00	\$50.00	\$1,650	\$150	\$300	\$150	\$2,250
5.9 Site Labor, (3 laborers, 13 days each)	39	day	•	,	\$252.80	,	\$0	\$0	\$9,859	\$0	\$9,859
5.10 Bathymetric Survey (post-removal)	1	ea	\$5,000.00		·		\$5,000	\$0	\$0	\$0	\$5,000
6 DISPOSAL			. ,				. ,				
6.1 Fly Ash	51	су		\$60.00			\$0	\$3,060	\$0	\$0	\$3,060
6.2 Loader, 4.5 cy	5	day		*****	\$330.80	\$854.40	\$0	\$0	\$1,654	\$4,272	\$5,926
6.3 Excavator, 1.5 cy	5	day			\$330.80	\$865.80	\$0	\$0	\$1,654	\$4,329	\$5,983
6.4 Site Labor, (2 laborers)	10	day			\$252.80	,	\$0	\$0	\$2,528	\$0	\$2,528
6.5 Disposal Sampling, TCLP	1	ea	\$1,700.00	\$50.00	\$100.00	\$50.00	\$1,700	\$50	\$100	\$50	\$1,900
6.6 Transportation & Disposal of Sediment, Subtitle "D"	1,280	ton	\$50.00	*	*	•	\$64,000	\$0	\$0	\$0	\$64,000
S.S. Transportation & Disposal of Columnity Column	.,		******				***************************************		*-	• -	
Subtotal							\$145,570	\$86,543	\$88,323	\$28,896	\$349,332
Original on Labor Cost @ 000)/							\$8,654			\$8,654
Overhead on Labor Cost @ 30°							\$14,557	\$8,654	\$8,832	\$2,890	\$34,933
G & A Cost @ 10°							φ1 4 ,357	\$6,654 \$4,327	φο,ο <i></i> 2	\$2,690 \$1,445	\$5,772
Tax on Materials and Equipment Cost @ 5%								φ+,321		Ψ1,440	φυ,//2
Total Direct Cost							\$160,127	\$108,179	\$97,155	\$33,230	\$398,691
Indirects on Total Direct Cost @ 25	%	(exclud	ing transportatio	n and disposal	cost)						\$83,435
Profit on Total Direct Cost @ 109	%									_	\$39,869
Cultinatal											\$521 006

Subtotal

\$521,996

6/8/2012 8:53 AM

Alternative MS0304-03: Hydraulic Dredging with Off-Yard Disposal Capital Cost

				Unit Cost				Extended C			
Item	Quantity	Unit	Subcontract	Material	Labor	Equipment	Subcontract	Material	Labor	Equipment	Subtotal
Health & Safety Monitoring @	2%										\$10,440
Total Field Cost											\$532,436
Contingency on Total Field Costs @ Engineering on Total Field Cost @										_	\$159,731 \$53,244
TOTAL CAPITAL COST											\$745,410

CLIENT:	Portsmouth Naval Shipyard	JOB NUMBER: 112G00932.0000.1101
SUBJECT:	OU	I-4: MS-12A
BASED ON:	OU-4 FS SECTION 10	DRAWING NUMBER:
BY: Date:	TJR CHECKED BY: MM (4/4/14)	APPROVED BY: DATE:

Analytical, per round for 30 years

Collect 1 sediment samples and analyze for metals.

	type	cost each	number	total
	metals	\$125	1	\$125
	PAHs	\$150	1	\$150
				\$275
	40% (QA/QC & Data	Validation _	\$110
			. —	\$385
Sampling report assume \$	1,500 per	round		\$1,500
5-year review	.			
Site Visit and I	Report			\$23,000

Alternative MS12A-04 - Removal and Off-Yard Disposal

Capital Cost

Pre-Construction Survey Same as Alternative MS12A-03

Site Work

Dredge contaminated sediment from outside building, pumping sediment into geotubes on a dewatering pad. Power wash contaminated sediments from inside building, pumping sediments into geotubes on a dewatering pad. Collect one water sample and 3 soil/sediment samples for confirmation testing.

Analytical Costs - per sample

Parameter	Unit Cost				
PAHs	\$ 150.00				
Metals	\$ 125.00				
	\$ 275.00				
	2 fast turn				
	\$ 550				

Assume no treatment of the water is required prior to discharge.

Allow tubes to dewater for 30 days. Mix 5% fly ash by volume to complete dewatering.

outside sediment volume	1,585 cy
percent water	20%
solid volume	1,268 cy
5% fly ash _	<u>63</u> cy
disposal volume	1,331 cy or
	1,598 tons (at 1.2 tons/cy

CLIENT:	Portsmouth Naval Shipyard	JOB NUMBER: 112G00932.0000.1101
SUBJECT:	OL	J-4: MS-12A
BASED ON:	OU-4 FS SECTION 10	DRAWING NUMBER:
BY: Date:	TJR CHECKED BY: ////////// 11-09, 6-10 & 6-12 Date: 44////	APPROVED BY: DATE:

inside sediment volume

percent water
solid volume
5% fly ash
disposal volume
150 cy
0%
cy
58 cy
158 cy
158 cy or
189 tons (at 1.2 tons/cy)

total disposal volume

1,787 tons

Collect one sediment sample for disposal testing. Assume sediment is nonhazardous for disposal.

Parameter	Unit Cost				
TCLP	\$ 850.00				
	\$ 850.00				
	2	fast turn			
	\$ 1,700				

Time to complete work

Mob & Setup	5 days
Temporary Wall Installation & Net	3 days
Hydraulic Dredge	5 days
Inside Sediment Removal	5 days
Geotube Dewatering	30 days
Mix fly ash & load for disposal	5 days
Demob	<u>5</u> days
	58 days
or	12 Weeks
or	3 Month

Kittery, Maine OU-4

Alternative MS12A-04: Removal and Off-Yard Disposal Capital Cost

				Unit Co				Extended			
ltem	Quantity	Unit	Subcontract	Material	Labor	Equipment	Subcontract	Material	Labor	Equipment	Subto
1 PROJECT PLANNING & DOCUMENTS											
1.1 Prepare Work Plans	400	hr			\$37.00		\$0	\$0	\$14,800	\$0	\$14,80
1.2 Construction Completion Report	200	hr			\$37.00		\$0	\$0	\$7,400	\$0	\$7,40
1.3 Pre-Construction Survey (ell grass)	1	ea	\$5,000.00				\$5,000	\$0	\$0	\$0	\$5,00
2 MOBILIZATION AND DEMOBILIZATION											
2.1 Site Support Facilities (trailers, phone, electric, etc.)	1	ls		\$1,000.00		\$3,500.00	\$0	\$1,000	\$0	\$3,500	\$4,50
2.2 Equipment Mobilization/Demobilization	4	ea			\$170.00	\$522.00	\$0	\$0	\$680	\$2,088	\$2,76
2.3 Crane Mobilization/Demobilization	35	mile				\$64.50	\$0	\$0	\$0	\$2,258	\$2,25
2.4 Dredge Equipment Mobilization/Demobilization	1	ea	\$5,200.00				\$5,200	\$0	\$0	\$0	\$5,20
3 FIELD SUPPORT								·		•	
3.1 Office Trailer	3	mo				\$375.00	\$0	\$0	\$0	\$1,125	\$1,12
3.2 Field Office Equipment, Utilities, & Support	3	mo		\$470.00			\$0	\$1,410	\$0	\$0	\$1,41
3.3 Storage Trailer	3	mo				\$99.00	\$0	\$0	\$0	\$297	\$29
3.4 Utility Connection/Disconnection (phone/electric)	1	ls	\$1,250.00				\$1,250	\$0	\$0	\$0	\$1,25
3.5 Site Superintendent	58	day		\$188.00	\$384.64		\$0	\$10,904	\$22,309	\$0	\$33,21
3.6 Site Health & Safety and QA/QC	28	day		\$188.00	\$307.68		\$0	\$5,264	\$8,615	\$0	\$13,87
4 DECONTAMINATION				,	•		* -	, -, ·	, -, - · -	• -	* •
4.1 Decontamination Services	1	mo		\$1,220.00	\$2,245.00	\$1,550.00	\$0	\$1,220	\$2,245	\$1,550	\$5.01
4.2 Temporary Equipment Decon Pad	1	ls		\$1,500.00	\$2,000.00	\$300.00	\$0	\$1,500	\$2,000	\$300	\$3,80
4.3 Decon Water	1.000	gal		\$0.20	4 =,000.00	4000.00	\$0	\$200	\$0	\$0	\$20
4.4 Decon Water Storage Tank, 6,000 gallon	1	mo		****		\$781.00	\$0	\$0	\$0	\$781	\$78
4.5 Clean Water Storage Tank, 4,000 gallon	1	mo				\$706.00	\$0	\$0	\$0	\$706	\$70
4.6 Disposal of Decon Waste (liquid & solid)	1	mo	\$950.00			φισσίσσ	\$950	\$0	\$0	\$0	\$95
5 TEMPORARY WALL, NET, & SEDIMENT REMOVAL	(inside)	1110	Ψ000.00				φοσο	ΨΟ	ΨΟ	ΨΟ	ΨΟΟ
5.1 Temporary Wall (barrier & liner for 1 month)	250	If		\$10.00			\$0	\$2,500	\$0	\$0	\$2,50
5.2 Install/Remove Temporary Wall, Crane	2	day		Ψ10.00	\$635.00	\$2,525.00	\$0	\$0	\$1,270	\$5,050	\$6.32
5.3 Pressure Washers, 2 each	10	day			ψ005.00	\$117.00	\$0	\$0	ψ1,270 \$0	\$1,170	\$1,17
5.4 Safety Net	9,000	sf				\$0.50	\$0	\$0	\$0	\$4,500	\$4,50
5.5 Sediment Pumps, 2 each	10	day				\$117.00	\$0	\$0	\$0 \$0	\$1,170	\$1,17
5.6 Skid Steer w/ attachments	5	day				\$335.60	\$0 \$0	\$0 \$0	\$0 \$0	\$1,678	\$1,67
5.7 Site Labor, (4 laborers @ 5 days each)	20	day			\$252.80	φ000.00	\$0 \$0	\$0 \$0	\$5,056	\$0	\$5,05
6 SEDIMENT EXCAVATION	20	uay			φ232.00		φυ	40	φ5,050	ΨΟ	φ0,00
6.1 Hydraulic Dredging	1,585	су	\$45.00				\$71,325	\$0	\$0	\$0	\$71.32
6.2 Geotube, 60' by 100'	4	ea	•	\$4,800.00			\$0	\$19.200	\$0	\$0	\$19.20
6.3 Dewatering Pad	4,000	sy		\$6.12	\$10.26	\$2.97	\$0	\$24,480	\$41,040	\$11.880	\$77.40
6.4 Turbidity Curtain	500	ft		\$39.90	Ţ.J. Z	+-	\$0	\$19,950	\$0	\$0	\$19.95
6.5 Turbidity Monitoring Buoy	1	mo		\$00.00		\$4,080.00	\$0	\$0	\$0	\$4.080	\$4.08
6.6 Test Dewatering Fluid	i	ea	\$550.00	\$50.00	\$100.00	\$50.00	\$550	\$50	\$100	\$50	\$75
6.7 Confirmation Sample, Soil/Sediment	3	ea	\$550.00	\$50.00	\$100.00	\$50.00	\$1,650	\$150	\$300	\$150	\$2,25
6.8 Site Labor, (3 laborers @ 14 days each)	42	day	Ψ000.00	ψ55.56	\$252.80	ψ55.55	\$0	\$0	\$10,618	\$0	\$10,61
7 DISPOSAL	72	duy			Ψ202.00		ΨΟ	ΨΟ	Ψ10,010	ΨΟ	ψ10,01
7.1 Fly Ash	71	су		\$60.00			\$0	\$4,260	\$0	\$0	\$4,26
7.2 Loader, 4.5 cy	5	day		Ψ00.00	\$330.80	\$854.40	\$0 \$0	\$4,200 \$0	\$1,654	\$4,272	\$5,92
7.3 Excavator, 1.5 cy	5	day			\$330.80	\$865.80	\$0 \$0	\$0 \$0	\$1,654	\$4,329	\$5,92 \$5,98
7.4 Site Labor, (2 laborers @ 5 days each)	10				\$252.80	φυυυ.ου	\$0 \$0	\$0 \$0	\$2,528	\$4,329 \$0	\$2,52
7.4 Site Labor, (2 laborers & 5 days each) 7.5 Disposal Sampling, TCLP	10	day ea	\$1,700.00	\$50.00	\$100.00	\$50.00	\$1,700	\$0 \$50	\$2,528 \$100	\$50	\$2,52 \$1,90
	1.787		\$1,700.00 \$50.00	φου.υυ	φ100.00	ຈ ວບ.ບປ	\$1,700 \$89,350	\$0 \$0	\$100 \$0	\$0	
7.6 Transportation & Disposal of Sediment, Subtitle "D"	1,/8/	ton	φ50.00				<u></u> Φ09,35U	\$ U	\$ U	\$ U	\$89,35
Subtotal							\$176,975	\$92,138	\$122,369	\$50,984	\$442,46

Alternative MS12A-04: Removal and Off-Yard Disposal Capital Cost

		T		Unit Cost				Extended	Cost		
Item	Quantity	Unit	Subcontract	Material	Labor	Equipment	Subcontract	Material	Labor	Equipment	Subtota
Overhead on Labor Cost @ 3 G & A Cost @ 1 Tax on Materials and Equipment Cost @ 5	10%						\$53,093	\$9,214 \$4,607	\$36,711 \$12,237	\$5,098 \$2,549	\$36,711 \$79,642 \$7,156
Total Direct Cost							\$230,068	\$105,959	\$171,316	\$58,631	\$565,973
Indirects on Total Direct Cost @ 2 Profit on Total Direct Cost @ 1		(excludir	ng transportatio	n and disposal cost)						_	\$118,918 \$56,597
Subtotal											\$741,489
Health & Safety Monitoring @ 2	2%										\$14,830
Total Field Cost											\$756,319
Contingency on Total Field Costs @ 4 Engineering on Total Field Cost @ 1										_	\$302,528 \$75,632
TOTAL CAPITAL COST											\$1,134,478

CLIENT:	Po	ortsmouth Nav	al Shipyard	JOB NUMBER:	112G00932.0000.1101
SUBJECT:			OL	J-4: MS-12B	
BASED ON:		OU-4 FS SEC	CTION 10	DRAWING NUMBER	
BY: Date:	TJR 11-09 & 7-10	CHECKED BY: Date:	7/6/10	APPROVED BY:	DATE:

Alternative MS12B-03 - Hydraulic Dredging with Off-Yard Disposal

Capital Cost

Pre-Construction Sampling

Labor, Materials, & Equipment per round (sediment sampling from boat)
Assume 3 days to sample with 3 people (1 to travel, 2 local), plus 1 day of preparations

Analytical

Collect 10 sediment samples and analyze for PAHs.

type	cost each	number	total	
PAHs	\$150	10	\$1,500	_
		-	\$1,500	-
		_	2	fast turn
		-	\$3,000	-
20% C	QA/QC & Data	Validation _	\$600	_
		-	\$3,600	-

Site Work

Dredge contaminated sediment, pumping sediment into geotubes on a dewatering pad. Collect one water sample and 3 soil/sediment samples for confirmation testing.

Analytical Costs - per sample

, , , , , , , , , , , , ,			
Parameter	Į į	Jnit Cost	•
Metals	\$	125.00	_
	\$	125.00	-
		2	fast turn
	Φ.	250	

Assume no treatment of the water is required prior to discharge.

Allow tubes to dewater for 30 days. Mix 5% fly ash by volume to complete dewatering.

sediment volume	335	су
percent water	50%	•
solid volume	168	cy
5% fly ash	8	су
disposal volume	176	cy or
	211	tons (at 1.2 tons/cy)

CLIENT:	P	ortsmouth Nava	al Shipyard	JOB NUMBER: 112G00932.0000.1101					
SUBJECT:			OU-	4: MS-12B					
BASED ON:		OU-4 FS SEC	TION 10	DRAWING NUMBER	R:				
BY: Date:	TJR 11-09 & 7-10	CHECKED BY: Date:	1/6/10	APPROVED BY:	DATE:				

Collect one sediment sample for disposal testing. Assume sediment is nonhazardous for disposal.

Parameter	Unit Cost
TCLP	\$ 850.00
	\$ 850.00
	2_fast turn
	\$ 1,700

Time to complete work

Mob & Setup	10	days
Hydraulic Dredge	2	days
Geotube Dewatering	30	days
Mix fly ash & load for disposal	2	days
Demob	5	days
_	49	days
or	10	Weeks
or	2	Month

PORTSMOUTH NAVAL SHIPYARD Kittery, Maine OU-4

Alternative MS12B-03: Hydraulic Dredging with Off-Yard Disposal Capital Cost

Capital Cost	T	Unit Cost						Extended Cost			
ltem	Quantity	Unit	Subcontract	Material		Equipment	Subcontract	Material	Labor	Equipment	Subtotal
1 PROJECT PLANNING & DOCUMENTS						1 1				ــــــــــــــــــــــــــــــــــــــ	
1.1 Prepare Work Plans	300	hr			\$37.00		\$0	\$ 0	\$11,100	\$0	\$11,100
1.2 Construction Completion Report	150	hr			\$37.00		\$0	\$0	\$5,550	\$0	\$5,550
1.3 Pre-Construction Sampling (10 samples)	1	ls	\$3,600.00	\$8,375.00	\$900.00	\$8,400.00	\$3.600	\$8.375	\$900	\$8,400	\$21,275
2 MOBILIZATION AND DEMOBILIZATION	•		40,000.00	40,070.00	4000.00	40,100.00	40,000	ψο,ο. σ	4 555	40,.00	42.,2.
2.1 Site Support Facilities (trailers, phone, electric, etc.)	1	ls		\$1,000.00		\$3,500.00	\$0	\$1,000	\$0	\$3,500	\$4,500
2.2 Equipment Mobilization/Demobilization	3	ea		ψ1,000.00	\$170.00	\$522.00	\$0	\$0	\$510	\$1,566	\$2,076
2.3 Dredge Equipment Mobilization/Demobilization	1	ea	\$5,200.00		\$170.00	QUEE.00	\$5,200	\$0	\$0	\$0	\$5,200
3 FIELD SUPPORT	•		40,200.00				40,200	Ψ	Ψυ	. 40	ψ0,200
3.1 Office Trailer	2	mo				\$375.00	\$0	\$0	\$0	\$750	\$750
3.2 Field Office Equipment, Utilities, & Support	2	mo		\$470.00		ψο, σ.σσ	\$0	\$940	\$0	\$0	\$940
3.3 Storage Trailer	2	mo		ψ470.00		\$99.00	\$0	\$0	\$0	\$198	\$198
3.4 Utility Connection/Disconnection (phone/electric)	1	ls	\$1,250.00			Ψ00.00	\$1,250	\$0	\$0	\$0	\$1,250
3.5 Site Superintendent	49	day	Ψ1,200.00	\$188.00	\$384.64		\$0	\$9,212	\$18,847	\$0	\$28,059
3.6 Site Health & Safety and QA/QC	19	day		\$188.00	\$307.68		\$0	\$3,572	\$5,846	\$0	\$9,418
4 DECONTAMINATION	13	ady		Ψ100.00	ΨΟΟ, 100Φ		ΨΟ	ψ0,072	Ψυ,υνυ	ΨΟ	ψ5,410
4.1 Decontamination Services	1	mo		\$1,220.00	\$2,245.00	\$1,550.00	\$0	\$1,220	\$2,245	\$1,550	\$5,015
4.2 Temporary Equipment Decon Pad	i	ls		\$1,500.00	\$2,000.00	\$300.00	\$0 \$0	\$1,500	\$2,000	\$300	\$3,800
4.3 Decon Water	1.000	gal		\$0.20	φ2,000.00	φ300.00	\$0 \$0	\$200	\$0	\$0	\$200
4.4 Decon Water Storage Tank, 6,000 gallon	1,000	mo		φυ.Ζυ		\$781.00	\$0	\$200 \$0	\$0 \$0	\$781	\$781
4.5 Clean Water Storage Tank, 4,000 gallon	1	mo				\$706.00	\$0 \$0	\$0 \$0	\$0 \$0	\$706	\$706
4.6 Disposal of Decon Waste (liquid & solid)	, 1	mo	\$950.00			φ/00.00	\$950	\$0 \$0	\$0 \$0	\$700 \$0	\$950
5 SEDIMENT EXCAVATION	•	1110	φ 9 50.00				\$950	φU	ΨU	4 0	\$830
5.1 Bathymetric Survey (pre-removal)	1		#E 000 00				¢E 000	\$0	\$0	\$0	\$5,000
5.2 Hydraulic Dredging	335	ea	\$5,000.00				\$5,000 \$15,035	\$0 \$ 0	\$0 \$ 0	\$0 \$0	
5.3 Geotube, 45' by 100'	ააა 1	су	\$45.00	\$3.840.00			\$15,075 \$0	\$3,840	\$0 \$0	\$0 \$0	\$15,075 \$3.840
· •	580	ea		* - ! - ·	£10.00	*n 07	\$0 \$0		* -	* -	7 - 7
5.4 Dewatering Pad 5.5 Turbidity Curtain		sy		\$6.12	\$10.26	\$2.97	\$0 \$0	\$3,550	\$5,951	\$1,723	\$11,223
	500	ft		\$39.90		#4.000.00	* '	\$19,950	\$0 \$0	\$0 \$4.000	\$19,950
5.6 Turbidity Monitoring Buoy	1	mo	#050.00	\$50.00	# 400.00	\$4,080.00	\$0 \$055	\$0 0 50	\$0	\$4,080	\$4,080
5.7 Test Dewatering Fluid	1	ea	\$250.00	\$50.00	\$100.00	\$50.00	\$250	\$50	\$100	\$50	\$450
5.8 Confirmation Sample, Soil/Sediment	3	ea	\$250.00	\$50.00	\$100.00	\$50.00	\$750	\$150	\$300	\$150	\$1,350
5.9 Site Labor, (3 laborers)	36	day	AF 000 00		\$252.80		\$0	\$0	\$9,101	\$0	\$9,101
5.10 Bathymetric Survey (post-removal)	1	ea	\$5,000.00				\$5,000	\$0	\$0	\$0	\$5,000
6 DISPOSAL	_			***			••		••	**	\$450
6.1 Fly Ash	8	су		\$60.00	4		\$0	\$480	\$0 \$0	\$0	\$480
6.2 Loader, 4.5 cy	2	day			\$330.80	\$854.40	\$0	\$0	\$662	\$1,709	\$2,370
6.3 Excavator, 1.5 cy	2	day			\$330.80	\$865.80	\$0	\$0	\$662	\$1,732	\$2,393
6.4 Site Labor, (2 laborers)	4	day		4	\$252.80	4	\$0	\$0	\$1,011	\$0	\$1,011
6.5 Disposal Sampling, TCLP		ea	\$1,700.00	\$50.00	\$100.00	\$50.00	\$1,700	\$50	\$100	\$50	\$1,900
6.6 Transportation & Disposal of Sediment, Subtitle "D"	211	ton	\$50.00				\$10,550	\$0	\$0	\$0	\$10,550
Subtotal							\$49,325	\$54,089	\$64,884	\$27,244	\$195,542
Overhead on Labor Cost @ 3	30%							\$5,409			\$5,409
G & A Cost @	10%						\$4,933	\$5,409	\$6,488	\$2,724	\$19,554
Tax on Materials and Equipment Cost @ 5	5%							\$2,704		\$1,362	\$4,067
Total Direct Cost							\$54,258	\$67,611	\$71,373	\$31,331	\$224,572
Indirects on Total Direct Cost @ 2	25%	exclud	ing transportatio	n and dienneal	cost)						\$53,268
Profit on Total Direct Cost @ 2		JANIGU	mg transportatio	and disposal	0000)						\$22,457
Front on Total Direct Cost &	1070									_	ΨZZ,40/

Alternative MS12B-03: Hydraulic Dredging with Off-Yard Disposal Capital Cost

				Unit Cost		i		Extended Co	ost		l.
Item	Quantity	Unit	Subcontract	Material	Labor	Equipment	Subcontract	Material	Labor	Equipment	Subtotal
Subtotal											\$300,297
Health & Safety Monitoring @ 2	2%										\$6,006
Total Field Cost											\$306,303
Contingency on Total Field Costs @ 3 Engineering on Total Field Cost @ 3										_	\$91,891 \$30,630
TOTAL CAPITAL COST											\$428,824

Appendix G Memorandum for MS-12A

Memorandum

To: Elizabeth Middleton, NAVFAC MIDLANT

From: Deborah Cohen, Tetra Tech

Date: July 18, 2013

Re: Operable Unit 4 Removal of Risk from within Portion of MS-12A at Portsmouth Naval Shipyard, Kittery,

Maine

Contract/CTO Number: N62470-08-D-1001/WE13

Introduction. The proposed CERCLA remedial action for Operable Unit 4 (OU4) includes removing contaminated sediments within MS-12A, which extends from the intertidal area of Building 178 to the end of the ramp extending from Building 178. Building 178 is currently undergoing a major renovation project by the Shipyard. To provide sufficient work space outside the building, a cofferdam was placed on the ramp to prevent river water from entering the construction area, and sediment within the working area (including the portion under the cofferdam) was removed as discussed herein. Upon completion of the renovation project, the portion of the ramp between the building and the outer edge of the cofferdam will be restored. Remaining contaminated sediment outside of the cofferdam (to the south) on the ramp outside of Building 178 will be remediated as part of the remedial action for OU4 (MS-12A).

The following provides information to support that no CERCLA action is required for the portion of MS-12A beginning inside the building and extending to the outside toe of the cofferdam.

Sediment Removal and Confirmation Activities. As part of the Shipyard construction project, sediment was removed from the intertidal area within Building 178 and from the portion of the ramp outside of Building 178 to the cofferdam, as shown on Figure 1. Sediment was removed until underlying concrete, bedrock, or rock was exposed. Generally no more than 1 foot of material was removed.

A site walk was conducted on January 23, 2013 by Navy personnel, the United States Environmental Protection Agency (USEPA) Remedial Project Manager (RPM), the Maine Department Environmental Protection (MEDEP) RPM, and Tetra Tech staff. The post-sediment removal conditions for the area

outside of Building 178 were observed. One foot of sediment and underlying material had been removed. The remaining material was very coarse, and a test pit was dug to 3 feet below ground surface (bgs) to better observe the remaining material. The material consisted of gravel, coarse sand, cobbles, boulders, and trace silt. It was agreed that the material remaining was not suitable habitat and contained very little sediment. Therefore, no additional removal of material or confirmation sampling was required for this area.

A site walk was conducted on March 14, 2013 by Navy personnel, the USEPA and MEDEP RPMs, and Tetra Tech staff to observe the post-sediment removal conditions for the intertidal area within Building 178. Bedrock or rock was found to underlie sediment in the western portion of the intertidal area within Building 178; however, soil consisting of sand and gravel was found to underlie sediment within the eastern portion of the intertidal area within Building 178. Some areas were covered with concrete; however, there appeared to be fewer areas with concrete than previously believed. Based on subsequent discussions, the Navy agreed to conduct confirmation sampling within the intertidal area of Building 178 to determine whether the soil had been adversely impacted by overlying contaminated sediment. Sampling was conducted on April 26, 2013. During the sampling event, the ground surface in the intertidal area was investigated to determine the depth of soil, if present. It was determined that the majority of the intertidal area was covered by concrete slab, cobbles, or rock (blast rock/bedrock); however, soil was 3 inches or greater in depth in some areas. Composite soil samples were collected in these areas and the samples were analyzed for MS-12A chemicals of concern (COCs). The results showed that COC concentrations in soil were acceptable. The results are discussed further in the Memorandum on July 15, 2013.

Conclusion. The remedial action objective for OU4 is to eliminate unacceptable risks to ecological benthic receptors exposed to site-related COCs in suitable sediment habitats. The results of the confirmation site walks and sampling show that current site conditions and restoration activities anticipated for the portion of MS-12A (shown on Figure 1) affected by the renovation project do not pose unacceptable risks to ecological benthic receptors. Therefore, no CERCLA action is required for this portion of MS-12A and it will be removed from MS-12A. The Record of Decision for OU4 will reflect the removal of this portion of MS-12A.

KITTERY, MAINE

SCALE

AS NOTED

FIGURE NO.

FIGURE 1

REV

0